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Abstract: We show that the application of the pinch technique to the conventional

Schwinger-Dyson equations for the gluon propagator, gluon-quark vertex, and three-gluon

vertex, gives rise to new equations endowed with special properties. The new series coin-

cides with the one obtained in the Feynman gauge of the background field method, thus

capturing the extensive gauge cancellations implemented by the pinch technique at the level

of individual Green’s functions. Its building blocks are the fully dressed pinch technique

Green’s functions obeying Abelian all-order Ward identities instead of the Slavnov-Taylor

identites satisfied by their conventional counterparts. As a result, and contrary to the stan-

dard case, the new equation for the gluon self-energy can be truncated gauge invariantly at

any order in the dressed loop expansion. The construction is streamlined by resorting to

the Batalin-Vilkovisky formalism which allows for a concise treatment of all the quantities

appearing in the intermediate steps. The theoretical and phenomenological implications of

this novel non-perturbative framework are discussed in detail.
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1. Introduction

The Schwinger-Dyson equations (SDE) [1, 2] provide a formal framework for tackling

physics problems requiring a non-perturbative treatment. The SDE constitute an infinite

system of coupled non-linear integral equations for all Green’s functions of the theory, and

can be used, at least in principle, to address questions related to chiral symmetry break-

ing, dynamical mass generation, formation of bound states, and other non-perturbative

effects [3, 4]. In practice, their usefulness hinges crucially on one’s ability to devise a

self-consistent truncation scheme that would select a tractable subset of these equations,

without compromising the physics one hopes to describe. Inventing such a scheme for the

SDE of gauge theories is a highly non-trivial proposition. The problem originates from the

fact that the SDEs are built out of unphysical Green’s functions; thus, the extraction of re-

liable physical information depends critically on delicate all-order cancellations, which may

be inadvertently distorted in the process of the truncation. Several of the issues related to

the truncation of the SDEs of QED have been addressed in a series of articles [5 – 8].

The situation becomes even more complicated for strongly coupled non-Abelian gauge

theories, such as QCD [9], mainly for the following reasons.

i. The complications caused by the dependence of the Green’s functions on the gauge-

fixing parameter are more acute in non-Abelian gauge-theories, as can be seen already

at the level of the most fundamental Green’s function, namely the two-point func-

tion (propagator) of the corresponding gauge bosons. In QED the photon self-energy

(vacuum polarization) is independent of the gauge-fixing parameter, both pertur-

batively (to all orders) and non-perturbatively; when multiplied by e2 it forms a

physical observable, the QED effective charge. In contradistinction, the gluon self-

energy is gauge-dependent already at one loop; depending on the gauge-fixing scheme

employed, this dependence may be more or less virulent. This difference is of little

practical importance when computing S-matrix elements at a fixed order in pertur-

bation theory, given that the gauge-dependence of the gluon self-energy is guaranteed

to cancel against similar contributions from other graphs, but has far-reaching con-

sequences when attempting to truncate the corresponding SDEs, written in some
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gauge. Contrary to what happens in the perturbative calculation, even if one were to

put together the non-perturbative expressions from these truncated SDEs to form a

physical observable, the gauge-cancellations may not go through completely, because

the process of the truncation might have distorted them. Thus, there is a high proba-

bility of ending up with a residual gauge-dependence infesting one’s non-perturbative

prediction for a physical observable.

ii. In Abelian gauge theories the Green’s functions satisfy naive Ward Identities (WIs):

given the tree-level WI, the all-order generalization is obtained by simply replacing

the tree-level expressions by the all-order ones. In general, this is not true for the

Green’s functions of non-Abelian gauge theories, where the WIs are modified beyond

tree-level, and are replaced by more complicated expressions known as Slavnov-Taylor

identities (STIs) [10, 11]; in addition to the basic Green’s functions of the theory they

involve various composite ghost operators. In order to appreciate how the fact that

the Green’s functions satisfy STIs may complicate the truncation procedure of the

SDEs, let us consider the simplest STI (and WI in this case) satisfied by the photon

and gluon self-energies alike, namely

qαΠαβ(q) = 0 . (1.1)

Eq. (1.1) is without a doubt the most fundamental statement at the level of Green’s

functions that one can obtain from the BRST symmetry [12]; it affirms the transver-

sality of the gauge-boson self-energy, be it a photon or a gluon, and is valid both

perturbatively to all orders as well as non-perturbatively. The problem stems from

the fact that in the SDE of Παβ(q) enter higher order Green’s functions, namely the

fully-dressed fundamental vertices of the theory. It is these latter Green’s functions

that in the Abelian context satisfy WIs whereas in the non-Abelian context satisfy

STIs. Thus, whereas in QED the validity of eq. (1.1) can be easily seen at the level of

the SDE, simply because qµΓµ(p, p + q) = e
[
S−1(p+ q) − S−1(p)

]
, in QCD proving

eq. (1.1) is very difficult, and requires the conspiracy of all full vertices appearing in

the SDE. Truncating the SDE naively usually amounts to leaving out some of these

vertices, and, as a result, eq. (1.1) is compromised.

The complications stemming from the two points points mentioned above are often

compounded by additional problems related to the loss of multiplicative renormalizability

and the inability to form renormalization-group invariant quantities.

Recently, a truncation scheme for the SDEs of non-Abelian gauge theories has been

proposed [13] that is based on the pinch technique (PT) [14, 15] and its connection with the

background field method (BFM) [16, 17] (see below). The way the PT resolves the difficul-

ties related with points (i) and (ii) mentioned above is by imposing a drastic modification

already at the level of the building blocks of the SD series, namely the off-shell Green’s func-

tions themselves. The PT is a well-defined algorithm that exploits systematically the sym-

metries built into physical observables, such as S-matrix elements or Wilson loops, in order

to construct new, effective Green’s functions, endowed with very special properties. The
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basic observation, which essentially defines the PT, is that there exists a fundamental can-

cellation between sets of diagrams with different kinematic properties, such as self-energies,

vertices, and boxes. This cancellation is driven by the underlying BRST symmetry [12], and

is triggered when a very particular subset of the longitudinal momenta circulating inside

vertex and box diagrams generate out of them (by “pinching” internal lines) propagator-

like terms. The latter are reassigned to conventional self-energy graphs, in order to give

rise to the aforementioned effective Green’s functions. These new Green’s functions are

independent of the gauge-fixing parameter [14, 15, 18 – 20], satisfy ghost-free, QED-like

WIs instead of the complicated STIs [15, 18], display only physical thresholds [21, 22],

have correct analyticity properties [23], and are well-behaved at high energies [24].

Of central importance for the ensuing analysis is the connection between the PT and

the BFM. The latter is a special gauge-fixing procedure that preserves the symmetry of

the action under ordinary gauge transformations with respect to the background (classical)

gauge field Âaµ, while the quantum gauge fields, Aaµ, appearing inside the loops, transform

homogeneously under the gauge group [25]. As a result, the background n-point functions

(i.e., those involving Âaµ fields) satisfy QED-like WIs to all orders. The BFM gives rise to

special Feynman rules (see appendix F); most notably (a) the tree-level vertices involving

Âaµ fields depend in general on the quantum gauge-fixing parameter ξQ, used to gauge-

fix the quantum gauge fields, and (b) the ghost sector is modified, containing symmetric

gluon-ghost vertices, as well as two-gluon-two-ghost vertices. Notice an important point:

the background n-point functions are gauge-invariant, in the sense that they satisfy (by

construction) QED-like WIs, but are not gauge-independent, i.e., they depend explicitly

on ξQ. The connection between PT and BFM [26, 27], demonstrated to be valid to all

orders [28], affirms that the (gauge-independent) PT n-point functions coincide with the

BFM n-point functions when the latter are computed at the special value ξQ = 1, also

known as the background Feynman gauge (BFG).

Let us now return to points (i) and (ii) and analyze them from the perspective of

the PT. In a nutshell, the way point (i) is resolved, for the prototype case of the gluon

self-energy, is the following. The BFG is a privileged gauge, in the sense that it is selected

dynamically when the gluon self-energy is embedded into a physical observable (such as an

on-shell test-amplitude). Specifically, the BFG captures the net propagator-like subampli-

tude emerging after QED-like conditions have been replicated inside the test-amplitude,

by means of the PT procedure. Thus, once the PT rearrangements have taken place, the

propagator is removed from the amplitude and is studied in isolation: one considers the

SDE for the background gluon self-energy, Π̂αβ(q), at ξQ = 1. Solving the SDE in the BFG

eliminates any gauge-related exchanges between the solutions obtained for Π̂αβ(q) and

other Green’s functions, when put together to form observables; thus, the solutions are

free of gauge artifacts. Regarding point (ii), the key ingredient is that now all full vertices

appearing in the new SDE satisfy Abelian WIs; as a result, gluonic and ghost contributions

are separately transverse, within each order in the “dressed-loop” expansion. Thus, it is

much easier to devise truncation schemes that manifestly preserve the validity of eq. (1.1).

The main results presented in this article are the following. We provide a detailed

and complete demonstration of how the application of the PT algorithm at the level of
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the conventional SD series leads to a new, modified SD series, with the special properties

mentioned above. A preliminary discussion of this issue has already appeared in brief

communication, dedicated to the SDE of the gluon self-energy [13]. From the technical

point of view, here we present a significantly more concise and direct proof, by virtue

of a crucial STI, that we employ for the first time. In addition, we extend the analysis

to include the SDE for the quark-gluon and three-gluon vertices, which are important

ingredients for obtaining a self-contained picture. We emphasize that the three-gluon

vertex relevant in this analysis is the one that would correspond, in the BFM language,

to Γ bAAA, i.e. one background gluon and two quantum ones merging, and not the fully

Bose-symmetric vertex Γ bA bA bA considered in [15, 29]. The reason is that it is the former

vertex that appears in the SDE of the gluon self-energy, in complete accordance with both

the PT unitarity arguments [30] (see also appendix A) and the independent diagrammatic

rules of the BFM [17].

Furthermore, we address an important conceptual and practical issue, related to the

fact that, qualitatively speaking, the new SD series expresses the BFG Green’s functions in

terms of integrals involving the conventional ones. This is already evident at the two-loop

level: the two-loop BFM gluon self-energy is written in terms of integrals involving the

conventional one-loop gluon self-energy. This example might suggest, at first sight, that

one cannot arrive at a genuine SDE involving the same unknown quantity on both sides,

but there is a way around it. Specifically, the use of a set of crucial identities, relating the

conventional and the BFM Green’s functions, allow one to convert the new SD series into

a dynamical equation involving either the conventional or the BFM gluon self-energy only.

The paper is organized as follows. In section 2 we briefly review the most salient

features of the PT methodology and explain qualitatively how the new SD series is obtained

and what are its main advantages compared to the conventional SD series, focusing on the

truncation possibilities it offers. In section 3 we introduce the notation and the formal

machinery that will be used in the actual derivation of the PT Schwinger-Dyson equations

of QCD. We focus particularly on the Batalin-Vilkovisky formalism and the plethora of

relations that it furnishes for the various fundamental and auxiliary Green’s functions

appearing in our construction. In section 4 we present the central result of this work,

namely the detailed derivation of the new set of SDEs. There are three main subsection,

dedicated to the construction of the new SDEs for the quark-gluon vertex, the three-gluon

vertex, and finally the gluon propagator. In section 5 we discuss some of the main practical

implications of the new SD series, and present our conclusions and outlook.

The paper contains five appendices. In appendix A we discuss some subtleties of the

extension of the PT algorithm beyond one loop, and in particular how to identify unam-

biguously the subset of three-gluon vertices that must undergo the PT decomposition. In

appendix B we describe the general strategy for carrying out the renormalization procedure

to the new SD series obtained within the PT. Finally, the last four appendices furnish the

derivation of several instrumental formulas employed in section 4, together with a complete

set of Feynman rules.
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2. The new SDE series: general philosophy and main results

In this section we present the general ideas and outline the basic philosophy of our approach,

before diving into the complexities of the full SDE construction. The style of this section

is rather qualitative; thus the reader who would like to skip the technicalities can get an

overview of the theoretical and practical advantages offered by the new SD series, compared

to the conventional formalism.

2.1 The difficulties with the conventional formulation

Let us first focus on the conventional SD series for the gluon self-energy. Defining the

transverse projector

Pαβ(q) = gαβ −
qαqβ
q2

, (2.1)

we have for the full gluon propagator in the Feynman gauge (ξ = 1)

i∆αβ(q) = −i

[
Pαβ(q)∆(q2) +

qαqβ
q4

]
, (2.2)

with ∆ab
αβ(q) = δab∆αβ(q) (in what follows color factors will be omitted whenever possible).

The scalar function ∆(q2) is related to the all-order gluon self-energy

Παβ(q) = Pαβ(q)Π(q2), (2.3)

through

∆(q2) =
1

q2 + iΠ(q2)
. (2.4)

Since Παβ(q) has been defined in (2.4) with the imaginary factor i factored out in front, it

is simply given by the corresponding Feynman diagrams in Minkowski space. The inverse

of ∆αβ(q) can be found by requiring that

i∆am
αµ (q)(∆−1)µβmb(q) = δabgβα, (2.5)

and is given by

∆−1
αβ(q) = iPαβ(q)∆

−1(q2) + iqαqβ, (2.6)

or, equivalently,

∆−1
αβ(q) = igαβq

2 − Παβ(q). (2.7)

In figure 1 we show the SDE satisfied by the gluon self-energy. It reads

∆−1(q2)Pαβ(q) = q2Pαβ(q) + i

6∑

i=1

(ai)αβ . (2.8)

Of course, in addition to the SDE for the gluon propagator, one must also include the

corresponding SDE for the vertices; they are normally expressed as skeleton expansions in

terms of the corresponding connected multi-particle kernels (the proper treatment of the

vertices is presented in section 4).
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++=

+

Aa
α Ab

β

q Aν′

n′

Aµ′

m′

Aν
n

Aµ
m

k2

k1

+

(a4) (a5)

+

(a6)

(a2)(a1) (a3)

Figure 1: Schwinger-Dyson equation satisfied by the gluon self-energy. The symmetry factors of

the diagrams are s(a1, a2, a5) = 1/2, s(a3, a6) = −1, s(a4) = 1/6. White blobs represent connected

Green’s functions while black blobs represent one particle irreducible ones.

The main theoretical problem one encounters when dealing with the SDE given above

is the fact that it cannot be truncated in a physically meaningful way. The most obvious

manifestation of this drawback is the following: after the truncation the fundamental

eq. (1.1) is violated. To recognize the origin of this difficulty, note that eq. (1.1) translates

at the level of the SDE to the statement

qα
6∑

i=1

(ai)αβ = 0. (2.9)

The diagrammatic verification of (2.9), i.e., through contraction of the individual graphs

by qα, is practically very difficult, essentially due to the complicated STIs satisfied by the

vertices involved. The most typical example of such an STI is that of the conventional

three-gluon vertex Γαµν(q, k1, k2) (all momenta entering), given by [31]

qαΓαµν(q, k1, k2)=
[
q2D(q)

]{
∆−1(k2

2)P
γ
ν (k2)Hµγ(k1, k2)−∆−1(k2

1)P
γ
µ (k1)Hνγ(k2, k1)

}
,

(2.10)

where the auxiliary function Hαβ is defined in figure 2. The kernel K appearing in this

function is the conventional connected ghost-ghost-gluon-gluon kernel appearing in the

usual QCD skeleton expansion [4, 32]. Notice also that Hαβ(k, q) is related to the con-

ventional gluon-ghost vertex Γβ(k, q) (with k the gluon and q the anti-ghost momentum)

by qαHαβ(k, q) = Γβ(k, q) [4, 31 – 33].

In addition, some of the pertinent STIs are either too complicated, such as that of the

conventional four-gluon vertex, or they cannot be cast in a particularly convenient form.

For instance, in the case of the conventional gluon-ghost vertex, Γµ(q, p), the STI that one

may obtain formally for qµΓµ(q, p) is the sum of two terms one of which is pµΓµ(q, p); this

clearly limits its usefulness in applications.

The main practical consequence of these complicated STIs is that one cannot trun-

cate (2.8) in any obvious way without violating the transversality of the resulting Παβ(q).

For example, keeping only graphs (a1) and (a2) is not correct even perturbatively, since the

ghost loop is crucial for the transversality of Παβ already at one-loop; adding (a3) is still

not sufficient for a SD analysis, because (beyond one-loop) qα[(a1) + (a2) + (a3)]αβ 6= 0.

– 7 –
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c

Aα

Hαβ(k1, k2) = gαβ +
β

k2

q

k1

Figure 2: The auxiliary function H appearing in the three-gluon vertex STI. Gray blobs represent

(connected) Schwinger-Dyson kernels (in this specific case the ghost-gluon kernel K appearing in

the usual QCD skeleton expansion).

2.2 The pinch technique

The PT [14, 15] is a particular algorithm for rearranging the perturbative series in such a

way as to obtain new Green’s functions that are independent of the gauge-fixing parameter,

and satisfy to all orders ghost-free, QED-like WIs, instead of the usual STIs. The original

motivation for resorting to it was precisely to devise a truncation scheme for the SDE that

would preserve manifestly the gauge-invariance of the answer at every step.

Let us emphasize from the beginning that, to date, there is no formal definition of

the PT procedure at the level of the functional integral defining the theory. In particular,

let us assume that the path integral has been defined using an arbitrary gauge-fixing

procedure (i.e. linear covariant gauges); then, there is no known a priori procedure (such as,

e.g., functional differentiation with respect to some combination of appropriately defined

sources) that would furnish directly the gauge-independent PT Green’s functions. The

definition of the PT procedure is operational, and is intimately linked to the diagrammatic

expansion of the theory (i.e. one must know the Feynman rules). In fact, the starting point

of the PT construction can be any gauge-fixing scheme that furnishes a set of well-defined

Feynman rules and gauge-independent physical observables. Specifically, one operates at a

certain well-defined subset of diagrams, and the subsequent rearrangements give rise to the

same gfp-independent PT answer, regardless of the gauge-fixing scheme chosen for deriving

the Feynman rules. Note however that, as the present paper amply demonstrates (and as

has already been emphasized in some of the earlier literature), the PT is not diagrammatic,

in the sense that one does not need to operate on individual graphs but rather on a handful

of classes of diagrams (each one containing an infinite number of individual graphs). This

is the enormous advantage of formulating the PT at the SD level.

The aforementioned rearrangements of the PT are collectively implemented through

the systematic use of the STIs satisfied by certain Green’s functions and kernels; the

latter constitute standard ingredients in the ordinary perturbative expansion or the SDE

of the various n-point Green’s functions. In the Feynman gauge, which is by far the most

convenient choice, the relevant STIs are triggered by the action of a very special set of

longitudinal momenta. Specifically, consider the subset of Feynman diagrams that have at

least one external three-gluon vertex

Γamnαµν (q, k1, k2) = −igfamnΓαµν(q, k1, k2). (2.11)

– 8 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
3

By “external” we mean a vertex that has one of its legs irrigated by a physical momentum,

to be denoted by q, as opposed to a virtual momentum, that is being integrated over in

the Feynman graph [30] (a detailed discussion of why only external vertices can pinch

while all other three-gluon vertices inside the loops should remain unchanged is provided

in appendix A). Then Γαµν(q, k1, k2) is decomposed as [14]

Γαµν(q, k1, k2) = ΓF
αµν(q, k1, k2) + ΓP

αµν(q, k1, k2),

ΓF
αµν(q, k1, k2) = (k1 − k2)αgµν + 2qνgαµ − 2qµgαν ,

ΓP
αµν(q, k1, k2) = k2νgαµ − k1µgαν . (2.12)

Evidently the above decomposition assigns a special role to the leg carrying the physical

momentum q, and allows ΓF
αµν(q, k1, k2) to satisfy the tree-level WI

qαΓF
αµν(q, k2, k1) = (k2

2 − k2
1)gµν , (2.13)

where the r.h.s. is the difference of two (tree-level) inverse propagators in the Feynman

gauge. Note that ΓF
αµν(q, k1, k2) (i) is Bose-symmetric only with respect to the µ and ν legs,

and (ii) it coincides with the BFM three-gluon vertex involving a background gluon, Âα(q),

and two quantum gluons, Aµ(k1) and Aν(k2), in the Feynman gauge (i.e., when the quan-

tum gauge-fixing parameter, ξQ, is chosen to be ξQ = 1). The term ΓP
αµν(q, k1, k2), which in

configuration space corresponds to a pure divergence, plays the central role in the PT con-

struction; indeed, the main thrust of most PT demonstrations (in this article and many oth-

ers before) is to essentially track down the precise action of the momenta contained inside

ΓP
αµν . Specifically, ΓP

αµν contains the longitudinal “pinching” momenta, which will get con-

tracted with the kernels and Green’s functions nested inside the remaining part of the dia-

gram, triggering the corresponding STIs; this, in turn, will produce the highly non-trivial re-

arrangements of the various terms characteristic of the PT. Quite remarkably, all these rear-

rangements finally amount to the modification of the ghost sector of the theory, reproducing

dynamically the corresponding ghost sector of the BFM, leaving no residual terms behind.

The simplest example that demonstrates the action of the pinching momenta is the

one-loop construction of the PT gluon self-energy (see subsection 2.4): the STI triggered

inside the conventional one-loop diagram (a) in figure 3 is simply the tree-level version of

eq. (2.10), namely

kµ1 Γαµν(q, k1, k2) = q2Pαν(q) − k2
2Pαν(k2), (2.14)

kν2Γαµν(q, k1, k2) = k2
1Pαµ(k1) − q2Pαµ(q). (2.15)

The terms proportional to an inverse propagator of the external leg (i.e., to q2), will

cancel (when embedded into a physical process!) against similar contributions from other

graphs (e.g., vertex-graphs), also produced by the corresponding action of the pinching

momenta inside them; in this case the pinching momenta literary “pinch out” internal quark

lines (hence the name of the technique). Thus, effectively, inside a physical process, this

particular subset of pinching contributions can be discarded altogether; this is the shortcut

introduced in the “intrinsic” [15]. The remaining pinching terms, namely those proportional

– 9 –
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to the internal leg, are instrumental for obtaining the PT answer; in particular, they

symmetrize the original Rξ ghost sector, so that it will finally coincide with the BFM ghost

sector at ξQ = 1 (see again subsection 2.4).

2.3 Pinch technique and background field method: some conceptual issues

As mentioned in the Introduction, the (gauge-independent) PT n-point functions coin-

cide with the BFM n-point functions when the latter are computed at the special value

ξQ = 1 (BFG). Even though this correspondence (and its correct interpretation) has been

addressed in various places in the literature, it may be useful to present a brief overview

of some of the main subtleties associated with it.

i. The objective of the PT construction is not to derive diagrammatically the BFG, but

rather to exploit the underlying BRST symmetry in order to expose a large number of

cancellations, and eventually define gauge-independent Green’s functions satisfying

abelian WIs. In fact, it was after more than a decade of independent PT activity

(when practically all one loop calculations had been carried out both in QCD and

the electroweak sector) when the aforementioned correspondence was discovered (i.e.

the PT results already existed, and then it was realized that they coincide with the

results of the BFG). Thus, while it is a remarkable and extraordinarily useful result

that the PT Green’s functions can also be calculated in the BFG, this needs a very

extensive demonstration. Therefore, the correspondence must be verified at the end

of the PT construction and should not be assumed beforehand.

ii. It is well known that, at any order, the S-matrix S̃ of the BFM, is equal to that in the

conventional linear (Rξ) gauges, i.e., S̃ = S There is no way, however, to deduce from

this equality the PT-BFG correspondence. Writing S = Γ∆Γ+B and S̃ = Γ̃∆̃Γ̃+ B̃,

using that the box diagrams are equal in both schemes, i.e., B = B̃, and, finally,

observing that the PT does not change the unique S-matrix, one can deduce that

Γ∆Γ = Γ̂∆̂Γ̂, and hence that Γ̂∆̂Γ̂ = Γ̃∆̃Γ̃. But from this does not follow that ∆̂ = ∆̃

nor that Γ̂ = Γ̃; one must prove explicitly the equality for individual Green’s functions.

iii. We emphasize that the PT is a way of enforcing gauge independence (and several

other physical properties) for off-shell Green’s functions; the BFM, in a general gauge,

is not. This is reflected in the fact that the BFM n-point functions are gauge-

invariant, in the sense that they satisfy (by construction) QED-like WIs, but are not

gauge-independent, i.e., they depend explicitly on ξQ. Had the BFM n-point func-

tions been ξQ-independent, in addition to being gauge-invariant, there would be no

need for introducing independently the PT.

iv. Notice that the ξQ-dependent BFM Green’s functions are not physically equivalent.

This is best seen in theories with spontaneous symmetry breaking: the dependence

of the BFM Green’s functions on ξQ gives rise to unphysical thresholds inside these

Green’s functions for ξQ 6= 1, a fact which limits their usefulness for resummation

purposes [21]. Only the case of the BFG is free from unphysical poles; that’s because

then (and only then) the BFM results collapse to the physical PT Green’s functions.
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v. The PT procedure has no a-priori knowledge of the BFM built into it, despite the

fact that the splitting of the regular three gluon vertex given in (2.12) suggests such

a preference. Indeed, while ΓF coincides with the BFG vertex, it only furnishes one

piece of the final answer. As already mentioned, the non-trivial part of the PT con-

struction resides in what happens when the ΓP part of the vertex gets contracted

with the Green’s functions and kernels nested inside the corresponding SD diagram.

The correspondence with the BFG works finally only because the WI triggered by ΓP

conspire in such a way as to reproduce dynamically the BFM ghost sector at ξQ = 1,

and nothing more. There is no a-priori way of knowing that this will indeed happen,

and hence the need for the detailed demonstration presented in the next sections.

vi. Amplifying the previous point, notice that the PT works perfectly well in the con-

text of non-covariant gauges (in fact it was first carried out in such a gauge), where

the ghosts are decoupled from the S-matrix. Spectacularly enough, the PT pro-

cedure produces completely dynamically the necessary ghost sector, from the STIs

that are triggered.

vii. Perhaps the most compelling fact that demonstrates that the PT and the BFM are

intrinsically two completely disparate methods is the following: one can apply the

PT within the BFM. For example, the PT can be used to combine pieces of Feynman

graphs in the background Landau gauge, just as in any other gauge, and the usual

PT results (those of the BFG) emerge. Operationally this is easy to understand:

away from ξQ = 1 even in the BFM there are longitudinal (pinching momenta) that

will initiate the pinching procedure. Ultimately, the BFG is singled out because of

the total absence, in this particular gauge, of any such longitudinal momenta.

viii. We emphasize that the PT construction goes through unaltered under circumstances

where the BFM Feynman rules cannot even be applied. Specifically, if instead of

an S-matrix element one were to consider a different observable, such as a current-

current correlation function or a Wilson loop (as was in fact done by Cornwall in the

original formulation [14], and more recently in [20]) one could not start out using the

background Feynman rules, because all fields appearing inside the first non-trivial

loop are quantum ones. Instead, by following the PT rearrangement inside these

physical amplitudes the unique PT answer emerges again.

2.4 The pinch technique as a gauge-invariant truncation scheme

Let us now see how the standard one-loop PT construction contains the seed of a gauge-

invariant truncation scheme for the SDE of the gluon self-energy. This exercise may seem

trivial at first, in the sense that no truncation is really needed, given that the two diagrams

comprising the full answer are elementary to calculate. However, it illustrates exactly how

the PT rearrangement furnishes a transverse one-loop approximation for the conventional

gluon self-energy, even if the (modified) ghost loop is omitted.

In what follows we will use dimensional regularization, and will employ the short-hand

notation
∫
k =

∫
ddk/(2π)d, where d = 4− ǫ is the space-time dimension. The conventional
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PT
+=

Âa
α Âb

β Âa
α Âb

β

( b̂ )(â)

+=
Aa
α Ab

β Aa
α Ab

β

(b)(a)

q

q

Παβ(q)

− 2 q2Pαβ(q)

(c)

Figure 3: The conventional one-loop gluon self-energy before (first line) and after (second line) the

PT rearrangement. A gray circle at the end of an external gluon line denotes that the corresponding

gluon behaves as if it were a background gluon.

one-loop self-energy in the Feynman gauge, to be denoted by Π
(1)
αβ(q), is given by the

diagrams (a) and (b) in figure 3 (we set the “seagull”-type contributions directly to zero,

using the standard result
∫
k k

−2 = 0). As is well known, neither (a) nor (b) is transverse,

and it is only their sum that furnishes a transverse answer for Π
(1)
αβ(q). Specifically, setting

f(q2) = iCA
g2

48π2
Γ
( ǫ

2

)( q2
µ2

)− ǫ
2

, (2.16)

with CA the Casimir eigenvalue of the adjoint representation (CA = N for SU(N)), and

dropping irrelevant constants, we have

(a)αβ =
1

4
f(q2)(19q2gαβ − 22qαqβ),

(b)αβ =
1

4
f(q2) (q2gαβ + 2qαqβ),

Π
(1)
αβ(q) = 5q2f(q2)Pαβ(q). (2.17)

The application of the PT amounts to carrying out the following rearrangement of the

two elementary three-gluon vertices

ΓαµνΓ
µν
β =

[
ΓF
αµν + ΓP

αµν

] [
ΓFµν
β + ΓPµν

β

]

= ΓF
αµνΓ

Fµν
β + ΓP

αµνΓ
µν
β + ΓαµνΓ

Pµν
β − ΓP

αµνΓ
Pµν
β . (2.18)

Then, using the elementary WIs of eqs. (2.14) and (2.15) we have that

ΓP
αµνΓ

µν
β + ΓαµνΓ

Pµν
β = −4q2Pαβ(q) − 2kαkβ − 2(k + q)α(k + q)β, (2.19)

ΓP
αµνΓ

Pµν
β = 2kαkβ + (kαqβ + qαkβ), (2.20)

where some terms have been set to zero by virtue of the dimensional regularization result∫
k k

−2 = 0. Thus, one can cast Π
(1)
αβ(q) in the following form:

Π
(1)
αβ(q) =

CAg
2

2

[∫

k

ΓF
αµνΓ

Fµν
β

k2(k + q)2
− 2

∫

k

(2k + q)α(2k + q)β
k2(k + q)2

]
− 2CAg

2

∫

k

q2Pαβ(q)

k2(k + q)2
. (2.21)
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+
pinch

pinch

Figure 4: Schematic representation of the pinching contributions one needs to consider away from

the Feynman gauge ξ = 1.

It is elementary to verify that each of the two terms in the square bracket on the r.h.s.

of (2.21) are transverse; thus the PT rearrangement has created three manifestly transverse

structures. That in itself might not be so important, if it were not for the fact that

these structures admit a special diagrammatic representation and a unique field-theoretic

interpretation. Specifically, the two terms in the square bracket correspond precisely to

diagrams (â) and ( b̂ ) defining the one-loop gluon self-energy in the BFG, to be denoted

by Π̃
(1)
αβ(q)|ξQ=1; note in particular the symmetrized gluon-ghost coupling. Thus, it is as

if the external gluons in (a) and (b) had been converted dynamically into background ones.

As explained in [13], the third term on the r.h.s. of (2.21) is the one-loop expression of

a special auxiliary Green’s function, to be defined shortly; it corresponds to diagram (c)

in figure 3, and is generated from the first term on the r.h.s. of (2.14). The one-loop PT

self-energy, to be denoted by Π̂
(1)
αβ(q), is obtained by simply dropping this last term from

the r.h.s. of (2.21); this defines the “intrinsic” PT [15]. The completely equivalent way of

saying this, corresponding to the “S-matrix” PT [14], is that the term corresponding to

graph (c) cancels exactly against a propagator-like contribution extracted from the vertex

graphs contributing to the full S-matrix element that one considers. Notice that this is true

only in the Feynman gauge: away from ξ = 1 additional pinching contributions need to be

considered, e.g., the ones coming from box and self-energy correction diagrams (figure 4).

To see how the aforementioned cancellation comes about, let us now imagine that

the gluon self-energy Π
(1)
αβ(q) is embedded into a physical process, such as the S-matrix

element for the quark-quark elastic scattering process ψ̄(r1)ψ(r2) → ψ̄(p1)ψ(p2), with

q = r1 − r2 = p2 − p1 being the momentum transfer. The one-loop quark-gluon vertex

consists of the two graphs shown in figure 5. Let us concentrate on the non-Abelian

diagram (d), and carry out the vertex decomposition of eq. (2.12) [15]:

(d) =
1

2
g3CAt

a

∫

k

Γαµνγ
νS(0)(/k + /p2

)γµ

k2(k + q)2

=
1

2
g3CAt

a

[∫

k

ΓF
αµνγ

νS(0)(/k + /p2
)γµ

k2(k + q)2
+

∫

k

ΓP
αµνγ

νS(0)(/k + /p2
)γµ

k2(k + q)2

]
. (2.22)
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Aaα

(d)

ψ(p2)

ψ̄(p1)

Aaα

(e)

q

ψ(p2)

ψ̄(p1)

q

Figure 5: The one-loop quark-gluon vertex appearing in the quark-quark elastic scattering process.

The first term on the r.h.s. of the second line is the pure vertex-like part of (d), while the

second term is purely propagator-like, as can be easily established using the elementary WI

kνγ
ν = (/k + /p−m) − (/p−m) (2.23)

The first term on the r.h.s. of (2.23) removes (pinches out) the internal bare quark prop-

agator S0(/k + /p), whereas the second vanishes on shell, since ū(p2)(6 p2 − m) = 0 and

(6p1 −m)u(p1) = 0. Thus,

∫

k

ΓP
αµνγ

νS(0)(/k + /p2
)γµ

k2(k + q)2

PT

Dirac eq.
−→ 2i

∫

k

1

k2(k + q)2
γα. (2.24)

The self-energy-like contribution from the two vertex graphs (mirror graph included), to be

denoted by Π
(1)P
αβ (q), is given by (longitudinal pieces may be added for free, due to current

conservation)

Π
(1)P
αβ (q) = 2CAg

2

∫

k

q2 Pαβ(q)

k2(k + q)2
. (2.25)

The PT one-loop quark-gluon vertex, to be denoted by Γ̂aα(p1, p2), is given by [18]

iΓ̂aα(p1, p2) = g2ta

[
CA
2

∫

k

ΓF
αµνγ

νS(0)(/k + /p2
)γµ

k2(k + q)2

−

(
CA
2

− Cf

)∫

k

γµS(0)(/k + /p2
)γαS(0)(/k + /p1

)γµ

k2

]
, (2.26)

where Cf is the Casimir eigenvalue of the fundamental representation [Cf = (N2 − 1)/2N

for SU(N)]. Now it is easy to derive the QED-like WI that the Γ̂aα(p1, p2) satisfies. Us-

ing (2.13), we have that

qαΓ̂aα(p1, p2) = −ig3taCf

[∫

k

γµS(0)(/k + /p2
)γµ

k2
−

∫

k

γµS(0)(/k + /p1
)γµ

k2

]

= igta
[
Σ(/p1

) − Σ(/p2
)
]
, (2.27)
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where Σ(/p) is the one-loop quark self-energy in the Feynman gauge [27, 20].

Returning to the gluon self-energy, Π̂
(1)
αβ(q) is defined as

Π̂
(1)
αβ(q) = Π

(1)
αβ(q) + Π

P(1)
αβ (q). (2.28)

After carrying out the integrals one obtains

(â)αβ = 10q2f(q2)Pαβ(q),

( b̂ )αβ = q2f(q2)Pαβ(q),

(c)αβ = −6q2f(q2)Pαβ(q), (2.29)

and thus [15]

Π̂
(1)
αβ(q) = (â)αβ + ( b̂ )αβ

= 11q2f(q2)Pαβ(q) = Π̃
(1)
αβ(q)|ξQ=1. (2.30)

Note that the second line of (2.30) expresses the PT-BFG correspondence at one loop [26].

Then, eq. (2.21) assumes the alternative form

Π
(1)
αβ(q) = Π̂

(1)
αβ(q) + (c)αβ . (2.31)

As has been explained in detail in [34], and as we will see in the following sections, eq. (2.31)

is the one-loop version of a general identity [35], which we will call “Background-Quantum”

identity (BQI) [34], relating the conventional and the BFM self-energies in terms of an

auxiliary Green’s function, corresponding to graph (c). This identity is valid to all orders in

perturbation theory, as well as non-perturbatively, and may be obtained either formally, by

resorting to the Batalin-Vilkovisky (BV) formalism, or diagrammatically, as a by-product

of the PT rearrangement of the conventional SD series; as we will see, in this latter case

no reference to the BV formalism is necessary.

Let us now focus on Π
(1)
αβ(q) and imagine for a moment that no ghost loops may be

considered when computing it, i.e., the graphs (̂b)αβ must be omitted; in a SDE context

this “omission” would amount to a “truncation” of the series. One may still obtain a

transverse approximation for Π
(1)
αβ(q) with no ghost-loop, given by

Π
(1)
αβ(q) = (â)αβ + (c)αβ = 4q2f(q2)Pαβ(q). (2.32)

Interestingly enough, the PT rearrangement offers already at one-loop the ability to trun-

cate gauge-invariantly, i.e., preserving the transversality of the truncated answer.

2.5 The new Schwinger-Dyson series

The implementation of the PT at the level of the SDE has been studied first in the context

of scalar QED [36]. The corresponding construction in the case of quarkless QCD has

been recently carried out in a short communication [13], where we restricted ourselves to

the SDE of the gluon propagator. As has been explained there, the PT rearrangement
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Aaα Abβ

q

(d2)

++

(d1)

=

+

(d3)

+

(d4)

+

(d9)

+

(d10)

+

+ +

(d7) (d8)(d5) (d6)

+

̂

(d11)

Figure 6: The new Schwinger-Dyson series projected out dynamically by the PT algorithm. The

symmetry factors are in this case s(d1, d2, d6) = 1/2, s(d5) = 1/6, and all the remaining diagrams

have s = −1.

gives rise dynamically to a new SD series (see figure 6), with the following characteristics:

on the r.h.s. we have graphs that are made out of new vertices, but contain inside them

the same gluon propagator as before, namely ∆αβ(q). The new vertices, to be denoted

by Γ̂amnαµν , Γ̂anmα , Γ̂amnrαµνρ , Γ̂amnrαµ , correspond precisely to the Feynman rules of the BFM

in the Feynman gauge, i.e., as already seen explicitly in the one-loop case, it is as if the

external gluon had been converted dynamically into a background gluon. The l.h.s. is

composed from the sum of three terms: in addition to the term ∆−1(q2)Pαβ(q), present

there from the beginning, we have two additional contributions, 2G(q2)∆−1(q2)Pαβ(q) and

G2(q2)∆−1(q2)Pαβ(q), which appear during the PT rearrangement of the r.h.s. (and are

subsequently carried to the l.h.s.). The quantity G(q2) is a special function, defined in

terms of the gluon and ghost propagators as well as the auxiliary function Hαβ of figure 2.

Specifically, define the following two-point function Λαβ(q), (we suppress color indices)

Λαβ(q) = CA

∫

k
H(0)
µαD(k)∆µν(q − k)Hνβ(q − k,−q), (2.33)

with the diagrammatic representation shown in figure 7. Then, G(q2) is defined as i times

the component of Λαβ(q) multiplying gαβ, namely

Λαβ(q) = igαβG(q2) + . . . , (2.34)

where the omitted terms are proportional to qαqβ. Thus, the term appearing on the l.h.s.

of the new SDE is ∆−1(q2)[1 +G(q2)]2Pαβ(q). So, one may write schematically

∆−1(q2)[1 +G(q2)]2Pαβ(q) = q2Pαβ(q) + i

11∑

1=1

(di)αβ , (2.35)

or, equivalently, casting it into a more conventional form with the inverse of the unknown

quantity isolated on the l.h.s., as

∆−1(q2)Pαβ(q) =
q2Pαβ(q) + i

∑11
1=1(di)αβ

[1 +G(q2)]2
. (2.36)
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+Λαβ(q) = α β βα

Figure 7: Diagrammatic representation of the auxiliary function Λ.

This new SD series has a very special structure. Let us first separate the diagrams on

the r.h.s. into four obvious categories: one-loop (dressed) gluonic contributions [(d1) and

(d2)], one-loop ghost contributions [(d3) and (d4)], two-loop gluonic contributions [(d5) and

(d6)], and two-loop ghost contributions [(d7), (d8), (d9) and (d10)]. It turns out that, by

virtue of the all-order WI satisfied by the full vertices Γ̂amnαµν , Γ̂anmα , Γ̂amnrαµνρ , Γ̂amnrαµ appearing

in the various diagrams, the contribution of each of the four subgroups is individually

transverse. Specifically, the four fundamental all-order WIs are given by

qαΓ̂amnαµν (q, k1, k2) = gfamn
[
∆−1
µν (k1) − ∆−1

µν (k2)
]
, (2.37)

qαΓ̂anmα (q, k1, k2) = igfamn
[
D−1(k1) −D−1(k2)

]
, (2.38)

qαΓ̂amnrαµνρ (q, k1, k2, k3) = gfadrΓdrmνρµ (q + k2, k3, k1) + gfadnΓdmrνµρ (q + k3, k1, k2)

+gfadmΓdnrµνρ(q + k1, k2, k3), (2.39)

qαΓ̂amnrαµ (q, k1, k2, k3) = −gfameΓenrµ (q + k1, k2, k3) − gfaneΓmerµ (k1, q + k2, k3)

−gfareΓmneµ (k1, k2, q + k3). (2.40)

Using these WIs one may show after some elementary operations that [37]

qα [(d1) + (d2)]αβ = 0,

qα [(d3) + (d4)]αβ = 0,

qα [(d5) + (d6)]αβ = 0,

qα [(d7) + (d8) + (d9) + (d10)]αβ = 0. (2.41)

[Notice that the one-loop dressed fermionic contributions (d11) trivially satisfy this transver-

sality property.]

As has been pointed out in [13], this special property has far-reaching practical conse-

quences for the treatment of the SD series. Specifically, it furnishes a systematic truncation

scheme that preserves the transversality of the answer. For example, keeping only the di-

agrams in the first group, we obtain the truncated SDE

∆−1(q2)Pαβ(q) =
q2Pαβ(q) + i[(d1) + (d2)]αβ

[1 +G(q2)]2
, (2.42)

and from the first equation of (2.41) we know that [(d1) + (d2)]αβ is transverse, i.e.,

[(d1) + (d2)]αβ = (d− 1)−1[(d1) + (d2)]
µ
µPαβ(q). Thus, the transverse projector Pαβ(q) ap-

pears exactly on both sides of (2.42); one may subsequently isolate the scalar cofactors on

both sides obtaining a scalar equation of the form

∆−1(q2) =
q2 + i[(d1) + (d2)]

µ
µ

[1 +G(q2)]2
. (2.43)
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A truncated equation similar to (2.42) may be written for any other of the four groups, or

for sums of these groups, without compromising the transversality of the answer. The price

one has to pay for this advantageous situation is that one must consider in addition the

equation determining G(q2), i.e., the gαβ part of eq. (2.33). This price is, however, rather

modest, given that eq. (2.33) may be approximated introducing, for example, a dressed-

loop expansion (see figure 2), without jeopardizing the transversality of Παβ(q), given that

[1 +G(q2)]2 affects only the size of the scalar prefactor.

In going from eq. (2.35) to eq. (2.36) one essentially chooses to retain the original

propagator ∆(q) as the unknown quantity, to be dynamically determined from the SDE.

There is, of course, an alternative strategy: one may define a new “variable” from the

quantity appearing on the l.h.s. (2.35), namely

∆̂(q) ≡
[
1 +G(q2)

]−2
∆(q), (2.44)

which leads to a new form for (2.35),

∆̂−1(q2)Pαβ(q) = q2Pαβ(q) + i
11∑

i=1

(di)αβ . (2.45)

Obviously, the special transversality properties established above holds as well for eq. (2.45);

for example, one may truncate it gauge-invariantly as

∆̂−1(q2)Pαβ(q) = q2Pµν(q) + i[(d1) + (d2)]αβ . (2.46)

Should one opt for treating ∆̂(q) as the new unknown quantity, then an additional

step must be carried out: one must use (2.44) to rewrite the entire r.h.s. of (2.45) in terms

of ∆̂ instead of ∆, i.e., carry out the replacement ∆ → [1 +G]2 ∆̂ inside every diagram on

the r.h.s. of eq. (2.45) that contains ∆’s.

Let us discuss further these two versions of the SDE. Eq. (2.42) furnishes a gauge-

invariant approximation for the conventional gluon self-energy ∆(q), whereas eq. (2.45) is

the gauge-invariant approximation for the effective PT self-energy ∆̂. The crucial point is

that one may switch from one to the other by means of eq. (2.44). For practical purposes

this means for example, that one may get a gauge-invariant approximation not just for

the PT quantity (background Feynman gauge) but also for the conventional self-energy

computed in the Feynman gauge. Eq. (2.44), which is the all-order generalization of the

one-loop relation given in eq. (2.31), plays an instrumental role in this entire construction,

allowing one to convert the SDE series into a dynamical equation for either ∆̂(q) or ∆(q).

3. The formal machinery

The extension of the PT algorithm to the SDEs of QCD is a challenging exercise, mainly due

to the large amount of different Green’s functions one needs to manipulate in the process.

Most of these Green’s functions are generated when longitudinal momenta trigger the STIs

satisfied by specific subsets of fully dressed vertices appearing in the ordinary perturbative

expansion. Due to the non-linearity of the BRST transformation [see eq. (3.8) below] they
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involve composite operators; specifically, they are of the type 〈0|T [sΦ(x) · · · ]|0〉 with s the

BRST operator and Φ a generic QCD field.

It turns out that the most efficient framework for dealing with this type of quantities

is the BV formalism, allowing the construction of these auxiliary (ghost) Green’s functions

in terms of a well-defined set of Feynman rules. In addition, this formalism furnishes a set

of useful identities (the BQIs mentioned in the previous section), relating Green’s functions

involving background fields to Green’s functions involving quantum fields.

In this section, we fix our conventions, present the QCD Lagrangian and its gauge- fix-

ing procedure (concentrating, in particular, on the conventional Rξ gauges and the BFM),

and briefly review the BV formalism. Then, we proceed to describe how one can extract

from the master equations the all-order STIs and BQIs needed in the coming PT construc-

tion, postponing their actual derivation to the appendix D and E. We will also describe

how to derive the so-called Faddeev-Popov equations (see also appendix C). Finally, in

the process of describing all the above topics, we will introduce a particularly compact

notation for Green’s functions, which encodes unambiguously all relevant information (i.e.,

the particle content, Lorentz and color structure, and momenta flow).

3.1 QCD Lagrangian and gauge fixing schemes

Throughout the paper we will adopt the conventions of the book by Peskin & Schröder [38].

The QCD Lagrangian density is given by

L = LI + LGF + LFPG. (3.1)

LI represents the gauge invariant SU(3) Lagrangian, namely

LI = −
1

4
Fµνa F aµν + ψ̄if (iγµDµ −m)ij ψ

j
f , (3.2)

where a = 1, . . . , 8 (respectively i, j = 1, 2, 3) is the color index for the adjoint (respectively

fundamental) representation, while “f” represents the flavor index. The field strength is

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (3.3)

and the covariant derivative is defined according to

(Dµ)ij = ∂µ(I)ij − igAaµ(t
a)ij , (3.4)

with g the (strong) coupling constant. Finally, the SU(3) generators ta satisfy the commu-

tation relations

[ta, tb] = ifabctc, (3.5)

with fabc the totally antisymmetric SU(3) structure functions.

LGF and LFPG represent respectively the (covariant) gauge fixing Lagrangian and its asso-

ciated Faddeev-Popov ghost term. The most general way of writing these terms is through

the expressions

LGF = −
ξ

2
(Ba)2 +BaFa, (3.6)

LFPG = −c̄asFa. (3.7)
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In the formulas above Fa is the gauge fixing function, and the Ba are auxiliary, non-

dynamical fields (the so called Nakanishi-Lautrup multipliers) that can be eliminated

through their (trivial) equations of motion; ca (respectively, c̄a) are the ghost (respectively,

anti-ghost) fields, and, finally, s is the BRST operator, with the BRST transformations of

the QCD fields given by

sAaµ = ∂µc
a + gfabcAbµc

c sca = −
1

2
gfabccbcc,

sψif = igca(ta)ijψ
j
f sc̄a = Ba,

sψ̄if = −igcaψ̄jf (t
a)ji sBa = 0. (3.8)

We thus see that the sum of the gauge fixing and Faddev-Popov terms can be written as

a total BRST variation:

LGF + LFPG = s

(
c̄aFa −

ξ

2
c̄aBa

)
. (3.9)

This is of course expected, since it is well known that total BRST variations cannot appear

in the physical spectrum of the theory. For our purposes, the gauge-fixing functions of

interest are the ones corresponding to the Rξ (renormalizable ξ gauges) and the BFM,

which we describe in what follows.

1. In the usual Rξ gauges, the gauge fixing function is chosen to be Fa
Rξ

= ∂µAaµ;

therefore one finds

LGF =
1

2ξ
(∂µAaµ)

2, (3.10)

LFPG = ∂µc̄a∂µc
a + gfabc(∂µc̄a)Abµc

c (3.11)

2. In the case of the BFM, one starts by splitting the gluon field into a background part,

Âaµ, and a quantum part, Aaµ. Notice that the BRST variation of the background

field will be zero, but the latter will enter in the variation of the quantum one, since

sAaµ = ∂µc
a + gfabc(Abµ + Âbµ)c

c. (3.12)

The gauge fixing function is

Fa
BFM = (D̂µAµ)

a

= ∂µAaµ + gfabcÂbµA
µ
c , (3.13)

which gives in turn

LGF =
1

2ξ
(∂µAaµ)

2 +
1

ξ
gfabc(∂µAaµ)Â

b
νA

ν
c +

1

2ξ
g2fabef cdeÂaµA

µ
b Â

c
νA

ν
d , (3.14)

LFPG = ∂µc̄a∂µc
a + gfabc(∂µc̄a)Abµc

c + gfabc(∂µc̄a)Âbµc
c − gfabcc̄aÂbµ(∂

µcc)

−g2fabef cdec̄aÂbµ(A
µ
c + Âcµ)c

d. (3.15)

We thus see the appearance of the characteristic ghost sector for the interaction with

background gluons, consisting in a symmetric Âcc̄ ghost vertex and a four particle

ÂAcc̄ one.
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3.2 Green’s functions: conventions

The Green’s functions of the theory can be constructed in terms of time-ordered products

of free fields Φ0
1 · · ·Φ

0
n and vertices of the interaction Lagrangian Lint (constructed from

the pieces of L which are not bilinear in the fields) through the standard Gell-Man-Low

formula for the 1PI truncated Green’s functions

ΓΦ1···Φn(x1, . . . , xn) = 〈T [Φ1(x1) · · ·Φn(xn)]〉
1PI

= 〈T [Φ0
1(x1) · · ·Φ

0
n(xn)] exp(−i

∫
d4xLint)〉

1PI. (3.16)

The complete set of Green’s functions can be handled most efficiently by introducing a

generating functional, which in Fourier space reads

Γ[Φ] =
∞∑

n=0

(−i)n

n!

∫ n∏

i=0

d4pi δ
4(

n∑

j=1

pj)Φ1(p1) · · ·Φn(pn)ΓΦ1···Φn(p1, . . . , pn), (3.17)

with pi the (in-going) momentum of the Φi field. Since in perturbation theory ΓΦ1···Φn is

a formal power series in ~, we will denote its m-loop contribution as Γ
(m)
Φ1···Φn

. Then, in

terms of the generating functional Γ[Φ] any of the Green’s function of the theory can be

obtained by means of functional derivatives:

ΓΦ1···Φn(p1, . . . , pn) = in
δnΓ

δΦ1(p1)δΦ2(p2) · · · δΦn(pn)

∣∣∣∣
Φi=0

, (3.18)

where Φ(p) denotes the Fourier transform of Φ(x) and our convention on the external

momenta is summarized in figure 8. From the definition given in eq. (3.18) it follows that

the Green’s functions i−nΓΦ1···Φn are simply given by the corresponding Feynman diagrams

in Minkowski space. Finally, notice that upon inversion of two (adjacent) fields we have

ΓΦ1···ΦiΦi+1···Φn(p1, . . . , pi, pi+1, . . . , pn) = ±ΓΦ1···Φi+1Φi···Φn(p1, . . . , pi+1, pi, . . . , pn),

(3.19)

with the minus appearing only when both fields Φi and Φi+1 obey Fermi statistics.

The Green’s functions constructed so far are sufficient for building all possible am-

plitudes involved in the S-matrix computation; however, due to the non-linearity of the

BRST transformations [eq. (3.8)], they do not cover the complete set of Green’s functions

appearing in the STIs of the theory (and therefore needed for its renormalization, as well

as the PT construction).

3.3 A brief introduction to the Batalin-Vilkovisky formalism

In this subsection we review briefly the BV formalism [39], which allows one to obtain both

the STIs as well as the BQIs of the theory at hand. In order to simplify the notation (and

since they will not play any role in what follows) we will suppress from now on all spinor

indices (both flavor and color).

Let us then start by introducing for each field Φ appearing in the theory a corre-

sponding anti-field, to be denoted by Φ∗. The anti-field Φ∗ has opposite statistics with
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Φn−1

Φn

Φ2

Φ1

p2

pn−1
pn

Figure 8: Our conventions for the (1PI) Green’s functions ΓΦ1···Φn
(p1, . . . , pn). All momenta

p2, . . . , pn are assumed to be incoming, and are assigned to the corresponding fields starting from

the rightmost one. The momentum of the leftmost field Φ1 is determined through momentum

conservation (
∑
i pi = 0) and will be suppressed.

Φ Aµ ψ ψ̄ c c̄ A∗
µ ψ∗ ψ̄∗ c∗ c̄∗ Ωa

µ

gh(Φ) 0 0 0 1 -1 -1 -1 -1 -2 0 1

st(Φ) B F F F F F B B B B F

Table 1: Ghost charges and statistics (B for Bose, F for Fermi) of the QCD fields, anti-fields and

BFM sources.

respect to Φ; its ghost charge, gh(Φ∗), is related to the ghost charge gh(Φ) of the field

Φ by gh(Φ∗) = −1 − gh(Φ). For convenience, we summarize the ghost charges and statis-

tics of the various QCD fields and anti-fields in table 1. Next, we add to the original

gauge invariant Lagrangian a term coupling the anti-fields with the BRST variation of the

corresponding fields, to get

LBV = LI + LBRST,

LBRST =
∑

Φ

Φ∗sΦ

= A∗a
µ (∂µca + gfabcAbµc

c) −
1

2
gfabcc∗acbcc + igψ̄∗cataψ − igcaψ̄taψ∗. (3.20)

Then, the action Γ(0)[Φ,Φ∗] constructed from LBV, will satisfy the master equation

∫
d4x

∑

Φ

δΓ(0)

δΦ∗

δΓ(0)

δΦ
= 0. (3.21)

To verify this, observe that, on one hand, the terms in δΓ(0)/δΦ that are independent from

the anti-fields Φ∗ are zero due the BRST (actually the gauge) invariance of the action

∫
d4x

∑

Φ

sΦ
δΓ

(0)
I

δΦ
=

∫
d4x(sΓ

(0)
I [Φ]) = 0 ; (3.22)
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on the other hand, terms in δΓ(0)/δΦ that are linear in the anti-fields vanish due to the

nihilpotency of the BRST operator

∫
d4x

∑

Φ,Φ′

sΦ′ δ(sΦ)

δΦ′
=

∫
d4x

∑

Φ

s2Φ = 0. (3.23)

Now, since the anti-fields are external sources, we must constrain them to suitable

values before we can use the action Γ(0) in calculations of S-matrix elements [25]. To that

end, we introduce an arbitrary fermionic functional, Ψ[Φ], with ghost charge -1, and set

for all the anti-fields Φ∗

Φ∗ =
δΨ[Φ]

δΦ
. (3.24)

Then the action becomes

Γ(0)[Φ, δΨ/δΦ] = Γ
(0)
I [Φ] + (sΦ)

δΨ[Φ]

δΦ

= Γ
(0)
I [Φ] + sΨ[Φ], (3.25)

and therefore, choosing the functional Ψ to satisfy the relation

sΨ =

∫
d4x (LGF + LFPG) , (3.26)

we see that the action Γ(0) (obtained from LBV) is equivalent to the gauge-fixed action

obtained from the original Lagrangian L of eq. (3.1). The functional Ψ is often referred to

as the “gauge fixing fermion”.

The BRST symmetry is crucial for endowing a theory with a unitary S-matrix and

gauge-independent physical observables; therefore, it must be implemented to all orders.

For doing so we establish the quantum corrected version of the master equation (3.21) in

the form of the STI functional

S(Γ)[Φ] =

∫
d4x

∑

Φ

δΓ

δΦ∗

δΓ

δΦ

=

∫
d4x

{
δΓ

δA∗µ
m

δΓ

δAmµ
+

δΓ

δc∗m
δΓ

δcm
+

δΓ

δψ∗

δΓ

δψ̄
+
δΓ

δψ

δΓ

δψ̄∗
+Bm δΓ

δc̄m

}

= 0, (3.27)

where Γ[Φ,Φ∗] is now the effective action.

In order to simplify the structure of the STI generating functional of eq. (3.27), let

us notice that the anti-ghost c̄a and the multiplier Ba have linear BRST transformations;

therefore they do not present the usual complications (due to non-linearity) of the other

QCD fields. Together with their corresponding anti-field, they enter bi-linearly in the

action, and one can write the complete action (which we now explicitly indicate it with a

C subscript) as a sum of a minimal and non-minimal sector

Γ
(0)
C [Φ,Φ∗] = Γ(0)[Aaµ, A

∗a
µ , ψ, ψ

∗, ψ̄, ψ̄∗, ca, c∗a] + c̄∗aBa. (3.28)

– 23 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
3

The last term has no effect on the master equation (3.21), which is satisfied by Γ(0) alone;

the fields {Aaµ, A
∗a
µ , ψ, ψ

∗, ψ̄, ψ̄∗, ca, c∗a} are then often called minimal variables while c̄a

and Ba are referred to as non-minimal variables or “trivial pairs”. Equivalently one can

introduce the minimal (or reduced) action by subtracting from the complete one the local

term corresponding to the gauge-fixing Lagrangian, i.e.,

Γ = ΓC −

∫
d4xLGF. (3.29)

In either cases, the result is that the STI functional is now written as

S(Γ)[Φ] =

∫
d4x

{
δΓ

δA∗µ
m

δΓ

δAmµ
+

δΓ

δc∗m
δΓ

δcm
+

δΓ

δψ∗

δΓ

δψ̄
+
δΓ

δψ

δΓ

δψ̄∗

}
= 0. (3.30)

In practice, the STIs generated from the functional of eq. (3.30) coincide with the one

obtained by the complete one after the implementation of the Faddeev-Popov equation

described in the next subsection [40]. One should also keep in mind that the Green’s

functions involving unphysical fields generated by the minimal functional coincide with the

ones generated by the complete functional only up to constant terms proportional to the

gauge fixing parameter, e.g., ΓAµAν (q) = ΓC
AµAν

(q) − iξ−1qµqν . We will discuss further

the differences between employing the complete and minimal generating functionals in the

appendix D and E.

Taking functional derivatives of S(Γ)[Φ] and setting afterwards all fields and anti-fields

to zero will generate the complete set of the all-order STIs of the theory; this is in exact

analogy to what happens with the effective action, where taking functional derivatives of

Γ[Φ] and setting afterwards all fields to zero generates the Green’s functions of the theory,

see eq. (3.18). However, in order to reach meaningful expressions, one needs to keep in

mind that:

1. S(Γ) has ghost charge 1;

2. functions with non-zero ghost charge vanish, since the ghost charge is a conserved

quantity.

Thus, in order to extract non-zero identities from eq. (3.30) one needs to differentiate the

latter with respect to a combination of fields, containing either one ghost field, or two ghost

fields and one anti-field. The only exception to this rule is when differentiating with respect

to a ghost anti-field, which needs to be compensated by three ghost fields. In particular,

identities involving one or more gauge fields are obtained by differentiating eq. (3.30) with

respect to the set of fields in which one gauge boson has been replaced by the corresponding

ghost field. This is due to the fact that the linear part of the BRST transformation of the

gauge field is proportional to the ghost field: sAaµ|linear = ∂µc
a. For completeness we notice

that, for obtaining STIs involving Green’s functions that contain ghost fields, one ghost

field must be replaced by two ghost fields, due to the non linearity of the BRST ghost field

transformation [sca ∝ fabccbcc, see eq. (3.8)]. The last technical point to be clarified is the

dependence of the STIs on the (external) momenta. One should notice that the integral
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over d4x present in eq. (3.30), together with the conservation of momentum flow of the

Green’s functions, implies that no momentum integration is left over; as a result, the STIs

will be expressed as a sum of products of (at most two) Green’s functions.

An advantage of working with the BV formalism is the fact that the STI functional

of eq. (3.30) is valid in any gauge, i.e., it will not be affected when switching from one

gauge to another. In particular, if we want to consider the BFM gauge, the only additional

step we need to take is to implement the equations of motion for the background fields at

the quantum level. This latter step is achieved most efficiently by extending the BRST

symmetry to the background gluon field, through the relations

sÂmµ = Ωm
µ , sΩm

µ = 0, (3.31)

where Ωm
µ represents a (classical) vector field with the same quantum numbers as the gluon,

ghost charge +1 and Fermi statistics (see also table 1). The dependence of the Green’s

functions on the background fields is then controlled by the modified STI functional

S ′(Γ′)[Φ] = S(Γ′)[Φ] +

∫
d4x Ωµ

m

(
δΓ′

δÂmµ
−

δΓ′

δAmµ

)
= 0, (3.32)

where Γ′ denotes the effective action that depends on the background sources Ωm
µ (with

Γ ≡ Γ′|Ω=0), and S(Γ′)[Φ] is the STI functional of eq. (3.30). Differentiation of the STI func-

tional (3.32) with respect to the background source and background or quantum fields will

then provide the so called BQIs, which relate 1PI Green’s functions involving background

fields with the ones involving quantum fields. The BQIs are particularly useful in the PT

context, since they allow for a direct comparison between PT and BFM Green’s functions.

Finally, the background gauge invariance of the BFM effective action implies that

Green’s functions involving background fields satisfy linear WIs when contracted with the

momentum corresponding to a background leg [see, e.g., eqs. (2.37) – (2.40)]. These WIs

are generated by taking functional differentiations of the WI functional

Wϑ[Γ
′] =

∫
d4x

∑

Φ,Φ∗

(
δϑ(x)Φ

) δΓ′

δΦ
= 0, (3.33)

where ϑa(x) are the local infinitesimal parameters corresponding to the SU(3) generators

ta that now play the role of the ghost field. The transformations δϑΦ are thus given by

δϑA
a
µ = gfabcAbµϑ

c δϑÂ
a
µ = ∂µϑ

a + gfabcÂbµϑ
c,

δϑc
a = −gfabccbϑc δϑc̄

a = −gfabcc̄bϑc,

δϑψ
i
f = igϑa(ta)ijψ

j
f δϑψ̄

i
f = −igϑaψ̄jf (t

a)ji, (3.34)

and the background transformations of the anti-fields δϑΦ
∗ coincide with the gauge trans-

formations of the corresponding quantum gauge fields according to their specific represen-

tation. Notice that, in order to obtain the WI satisfied by the Green’s functions involving

background gluons Â, one has to differentiate the functional (3.33) with respect to the

corresponding parameter ϑ.
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All the STIs and BQIs needed for the PT construction carried out in the rest of this

paper, together with the method of constructing the auxiliary functions appearing in these

identities, are reported in appendix D and E, respectively.

3.4 Faddeev-Popov equation(s)

The final ingredient needed for carrying out the PT program for SDEs is the derivation

of the so-called Faddev-Popov equation (FPE). The FPE depends crucially on the form of

the ghost Lagrangian, which, in turn, depends on the gauge fixing function [see eq. (3.7)].

In what follows we will first present the corresponding derivation in the Rξ gauges, and

then in the BFM.

To derive the FPE in the Rξ gauges, one observes that in the QCD action the only term

proportional to the anti-ghost fields comes from the Faddeev-Popov lagrangian density,

which can be rewritten as

L
Rξ

FPG = −c̄m∂µ(sAmµ ) = −c̄m∂µ
δΓ

δA∗m
µ

. (3.35)

Differentiation of the action with respect to c̄a then yields the FPE in the form of the

identity
δΓ

δc̄m
+ ∂µ

δΓ

δA∗m
µ

= 0, (3.36)

so that, taking the Fourier transform, we arrive at

δΓ

δc̄m
+ iqµ

δΓ

δA∗m
µ

= 0. (3.37)

Thus, in the Rξ case, the FPE amounts to the simple statement that the contraction of a

leg corresponding to a gluon anti-field (A∗m
µ ) by its own momentum (qµ) converts it to an

anti-ghost leg (c̄m). Functional differentiation of this identity with respect to QCD fields

(but not background sources and fields, see below) furnishes useful identities, that will be

used extensively in our construction.

For obtaining FPEs for Green’s functions involving BFM gluons and sources, one has

to modify eq. (3.37), in order to account for the presence of extra terms in the BFM gauge

fixing function (and therefore in the BFM Faddeev-Popov ghost Lagrangian). To that end,

eq. (3.35) gets rewritten as

LBFM
FPG = −c̄m∂µ

δΓ′

δA∗m
µ

− gfmnrgνρc̄
mΩν

nA
ρ
r − gfmnrgνρc̄

mÂνn
δΓ′

δA∗ρ
r
, (3.38)

and so, after differentiation with respect to the anti-ghost field, and taking the Fourier

transform, we have in the BFM case

δΓ′

δc̄m
+ iqµ

δΓ′

δA∗m
µ

+ gfmnrgνρΩ
ν
nA

ρ
r + gfmnrgνρÂ

ν
n

δΓ′

δA∗ρ
r

= 0. (3.39)

The specific FPEs needed for the PT construction are reported in appendix C.
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K(0)(1)

(a) (b)

K(0)

(d)

K(0)

(c)

k2

k1

q

Figure 9: The S-matrix one-loop PT setting for constructing the gluon propagator. The external

particles are left unspecified since they can be both quarks as well as gluons. The kernels K(0)

appearing in diagram (b) are the tree-level version of the one shown in Figs 11 and 15 (depending

on the external particles chosen) and therefore contains only the 1PR terms shown there. Three

diagrams having the kernels on the opposite side are not shown.

3.5 The (one-loop) PT algorithm in the BV language

Before entering into the intricacies of the SDEs, it is important to make contact between

the PT algorithm and the BV formalism. This is best done at the one-loop level, since in

this case all calculations are rather straightforward and it is relatively easy to compare the

standard diagrammatic results with those coming from the BV formalism. This comparison

will (i) help us identify the pieces that will be generated when applying the PT algorithm,

and (ii) establish the rules for distributing the pieces obtained in (i) among the different

Green’s functions appearing in the calculation.

The starting point is the embedding of the (one-loop) gluon propagator into an S-

matrix element (figure 9), exactly as done in subsection 2.4. Then, carrying out the

PT decomposition Γ = ΓP + ΓF on the tree-level three-gluon vertex of diagram (b) [see

eq. (2.12)], we find

(b) = (b)F + (b)P, (3.40)

(b)P = −
1

2
gfam

′n′

∫

k1

(gαν′k1µ′ − gαµ′k2ν′)∆
(0)µ′µ
m′m (k1)∆

(0)ν′ν
n′n (k2)K

(0)

Am
µ A

n
νψψ̄

(k2, p2,−p1).

(3.41)

Of couse, k1 and k2 are not independent, since k2 = q − k1; thus, we have

fam
′n′

gαµ′

∫

k1

k2ν′∆
(0)µ′µ
m′m (k1)∆

(0)ν′ν
n′n (k2)K

(0)

Am
µ A

n
νψψ̄

(k2, p2,−p1)

= fam
′n′

gαµ′

∫

k1

k1ν′∆
(0)µ′µ
m′m (k2)∆

(0)ν′ν
n′n (k1)K

(0)

Am
µ A

n
νψψ̄

(k1, p2,−p1)

= −fam
′n′

gαν′

∫

k1

k1µ′∆
(0)µ′µ
m′m (k1)∆

(0)ν′ν
n′n (k2)K

(0)

Am
µ A

n
νψψ̄

(k2, p2,−p1), (3.42)

and we see that the contributions of the two longitudinal momenta add up, thus removing

the 1/2 symmetry factor (this is clearly an all-order result, since the above derivation does
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not depend on the various Green’s functions and kernels being at tree-level). Therefore

we obtain

(b)P = −gfamngνα

∫

k1

1

k2
1

1

k2
2

kµ1K
(0)

Am
µ A

n
νψψ̄

(k2, p2,−p1). (3.43)

On the other hand, using the results

k2
1D

(0)
mm′(k1) = δmm

′

, Γ
(0)

cm′An
νA

∗ρ
d

= ggρνf
m′dn, Γ

(0)

cm′A∗ρ
d
ψψ̄

= 0, (3.44)

we find that the STI of eq. (D.29) reduces to

kµ1K
(0)

Am
µ A

n
νψψ̄

(k2, p2,−p1) = −ggγν f
dmnΓ

(0)

Ad
γψψ̄

(p2,−p1) + Γ
(0)

ψψ̄
(p1)K

(0)

An
νψc

mψ̄∗
(p2, k1,−p1)

+K
(0)

An
νψ

∗ψ̄cm
(p2,−p1, k1)Γ

(0)

ψψ̄
(p2). (3.45)

At this point the calculation is over and one needs to reshuffle the pieces generated. First

of all, notice that when the external legs are on-shell the last two terms of the above STI

drop out, by virtue of the (all-order) equations of motion

Γ
(0)

ψψ̄
(p2)u(p2)

∣∣∣
/p
2
=m

= 0, (3.46)

ū(p1)Γ
(0)

ψψ̄
(p1)

∣∣∣
/p1=m

= 0. (3.47)

Thus, making use of eq. (E.9) we are finally left with the result

(b)P = g2CAδ
adgγα

∫

k1

1

k2
1

1

k2
2

Γ
(0)

Ad
γψψ̄

(p2,−p1)

= −Γ
(1)

Ωa
αA

∗γ
d

(−q)Γ
(0)

Ad
γψψ̄

(p2,−p1). (3.48)

Notice that, as explicitly shown in appendix E, the auxiliary function ΓΩαA∗

β
[see eq. (E.9)

and figure 24] coincide with the function Λαβ [see eq. (2.33) and figure 7] to all orders

Λαβ(q) ≡ ΓΩαA∗

β
(q). (3.49)

Thus the scalar function G(q2) introduced earlier in section 2.5 corresponds also to (i times)

the gαβ part of ΓΩαA∗

β
.

We can now define the PT (on-shell) quark-gluon vertex, by considering the corre-

sponding Green’s function embedded in the diagrams

(b)F + (c) = (b) + (c) − (b)P

⇒ iΓ̂
(1)

Aa
αψψ̄

(p2,−p1)= iΓ
(1)

Aa
αψψ̄

(p2,−p1)+Γ
(1)

Ωa
αA

∗γ
d

(−q)Γ
(0)

Ad
γψψ̄

(p2,−p1), (3.50)

while the PT self-energy will given by the combination

(a) + 2(b)P ⇒ Π̂
(1)
αβ(q) = Π

(1)
αβ(q) + Π

P(1)
αβ (q). (3.51)
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The factor of 2 comes from the mirror diagram of (b) having the kernel on the left side,

and we have defined [with the aid of eq. (D.10)]

δabΠ
P(1)
αβ (q) = −2Γ

(1)

Ωa
αA

∗γ
d

(q)q2Pγβ
(q)δbd

= 2iΓ
(1)

Ωa
αA

∗γ
d

(q)Γ
(0)

Ad
γA

b
β

(q). (3.52)

We can now proceed to the comparison of the PT Green’s function with that of the

BFG, by resorting to the BQIs. Clearly, eq. (3.50) represents the one-loop version of the

BQI of eq. (E.13), and we immediately conclude that

Γ̂
(1)

Aa
αψψ̄

(p2,−p1) ≡ Γ
(1)
bAa

αψψ̄
(p2,−p1). (3.53)

For the self-energy we have instead [recall that −ΓAm
µ A

n
ν
(k) = Πµν(k)]

δabΠ̂
(1)
αβ(q) = −Γ

(1)

Aa
αA

b
β

(q) + 2iΓ
(1)

Ωa
αA

∗γ
d

(q)Γ
(0)

Ad
γA

b
β

(q) , (3.54)

which represents the one-loop version of the BQI of eq. (E.4), i.e., we have

δabΠ̂
(1)
αβ(q) = −Γ

(1)
bAa

α
bAb

β

(q). (3.55)

The procedure just described goes through almost unaltered when choosing the exter-

nal legs of the process to be gluons. In this case

(b)P = −gfamngνα

∫

k1

1

k2
1

1

k2
2

kµ1K
(0)
Am

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1). (3.56)

and one has from the STI of eq. (D.36) the result

kµ1K
(0)
Am

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1) = −ggγνf

dmnΓ
(0)

Ad
γA

r
ρA

s
σ
(p2,−p1)

+K
(0)

cmAn
νA

s
σA

∗γ
d

(k2,−p1, p2)Γ
(0)

Ad
γA

r
ρ
(p2)

+K
(0)

cmAn
νA

r
ρA

∗γ
d

(k2, p2,−p1)Γ
(0)

Ad
γA

s
σ
(p1)

+K
(0)

cmAr
ρA

s
σA

∗γ
d

(p2,−p1, k2)Γ
(0)

Ad
γA

n
ν
(k2). (3.57)

As before, the second and third terms drop out when the external gluons are taken to be

on-shell; thus we are left with the terms

(b)P=−Γ
(1)

Ωa
αA

∗γ
d

(−q)Γ
(0)

Ad
γA

r
ρA

s
σ
(p2,−p1)−gf

amngνα

∫

k1

1

k2
1

1

k2
2

K
(0)

cmAr
ρA

s
σA

∗γ
d

(p2,−p1, k2)Γ
(0)

Ad
γA

n
ν
(k2)

= −Γ
(1)

Ωa
αA

∗γ
d

(−q)Γ
(0)

Ad
γA

r
ρA

s
σ
(p2,−p1) + (b′). (3.58)

The first term is exactly the PT propagator-like piece encountered in the quark case; this is

the essence of the process independence of the PT. Notice, however, that the second term

was not present before. The action of this term will be discussed in detail in section 4.2;

here it suffices to note that it is a vertex-like piece (as is evident from the structure of the
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kernel appearing in it) and, therefore, it ought to be allotted to the PT three-gluon vertex.

Thus we can define the PT (on-shell) three-gluon vertex and propagator as before, i.e.,

(b)F + (b′) + (c) + (d) = (b) + (c) + (d) + (b′) − (b)P

⇒ iΓ̂
(1)
Aa

αA
r
ρA

s
σ
(p2,−p1) = iΓ

(1)
Aa

αA
r
ρA

s
σ
(p2,−p1) + Γ

(1)

Ωa
αA

∗γ
d

(−q)Γ
(0)

Ad
γA

r
ρA

s
σ
(p2,−p1),

(a) + 2(b)P ⇒ Π̂
(1)
αβ(q) = Π

(1)
αβ(q) + Π

P(1)
αβ (q). (3.59)

The comparison with the BQI of eq. (E.17) shows then that

Γ̂
(1)
Aa

αA
r
ρA

s
σ
(p2,−p1) = Γ

(1)
bAa

αA
r
ρA

s
σ

(p2,−p1), (3.60)

and again we find

δabΠ̂
(1)
αβ(q) = −Γ

(1)
bAa

α
bAb

β

(q). (3.61)

The (one-loop) procedure described above carries over practically unaltered to the

corresponding SDEs. This is due to the fact that: (i) the pinching momenta will be always

determined from the tree-level decomposition of eq. (2.12); (ii) their action is completely

fixed by the structure of the STIs they trigger [eqs. (D.29) and (D.36) for the vertices at

hand]; (iii) the kernels appearing in these STIs are the same appearing in the corresponding

BQIs; thus, it is always possible to write the result of the action of pinching momenta in

terms of auxiliary Green’s functions appearing in the BQIs.

The only operational difference is that, in the case of the SDEs for the quark-gluon

vertex and the three-gluon vertex, all three external legs will be off-shell. This is of course

unavoidable, given that these (fully dressed) vertices are nested in the SDE of the off-shell

gluon self-energy [see figure 6, diagrams (d11) and (d1), respectively], and their legs inside

the diagrams are irrigated by the virtual off-shell momenta. As a result, the equations

of motion employed above [viz. eq. (3.47)] should not be used in this case; therefore, the

corresponding terms, proportional to inverse self-energies, do not drop out, and form part

of the resulting BQI.

Thus the PT rules for the construction of SDEs may be summarized as follows:

i. For the SDEs of vertices, with all three external legs off-shell, the pinching mo-

menta, coming from the only external three-gluon vertex undergoing the decomposi-

tion (2.12), generate four types of terms: one of them, corresponding to the term (b′)

in eq. (3.58), is a genuine vertex-like contribution that must be included in the final

PT answer for the vertex under construction, while the remaining three-terms will

form part of the emerging BQIs (and thus would be discarded from the PT vertex).

These latter terms have a very characteristic structure, which facilitates their identifi-

cation in the calculation. Specifically, one of them is always proportional to the auxil-

iary function ΓΩA∗ , while the other two are proportional to the inverse propagators of

the fields entering into the two legs that did not undergo the decomposition of (2.12).

ii. In the case of the new SDE for the gluon propagator the pinching momenta will only

generate pieces proportional to ΓΩA∗ , which should be discarded from the PT answer

for the gluon two-point function (since they are exactly those that cancel against the

contribution coming from the corresponding vertices).
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ψ̄ ψ

(c)(a) (b) (e)

++ + +

(d)

=
q

p1

ψ̄ ψ

ψ̄ ψ ψ̄ ψ ψ̄ ψ ψ̄ ψ

ψ̄

( ĝ )

+⊃

q

ψ

p1 p2

Âaα

( f̂ )

Âaα Âaα

p2
k1

Am′

µ′

Am
µ An

ν

An′

ν′

k2

Aaα Aaα Aaα Aaα
Aaα Aaα

Figure 10: The SDE for the quark-gluon vertex. The symmetry factors of the Rξ diagrams (first

line) are: s(a, b) = 1. s(c) = 1/2, s(d) = 1/6 and s(e) = −1. For the key diagram (c) we show

explicitly the kinematics chosen. In the second line we show the additional topologies present in

the BFM version of the equation [s(f̂ , ĝ) = −1], generated dynamically by the PT procedure.

4. PT Green’s functions from Schwinger-Dyson equations

After the introduction of the useful tools and basic rules required for the application of the

PT program to the (non-perturbative) case of SDEs, we are ready to describe in detail the

actual construction, starting from the corresponding SDEs written in the Feynman gauge

of the Rξ. We will first derive the new SDEs for the two vertices, Γ̂Aψψ̄ and Γ̂AAA, given

that the calculations are easier to work out, and will then address the more complicated

case of the SDE for the PT gluon propagator Γ̂AA.

4.1 Quark-gluon vertex

The SDE of the quark-gluon vertex, shown in figure 10, is the simplest one as far as the PT

construction is concerned, capturing at the same time several of the essential steps that

appear during the application of the PT algorithm to the SDEs of QCD.

We start by carrying out the decomposition of eq. (2.12) on the tree-level vertex ap-

pearing in (c), the only diagram we will touch in our construction. Let us concentrate on

the ΓP part; one has

(c)P = −
1

2
gfam

′n′

∫

k1

(gαν′k1µ′ − gαµ′k2ν′)∆
µ′µ
m′m(k1)∆

ν′ν
n′n(k2)KAm

µ A
n
νψψ̄

(k2, p2,−p1)

= gfamn
′

gαν′

∫

k1

1

k2
1

∆νν′

n′n(k2)k
µ
1KAm

µ A
n
νψψ̄

(k2, p2,−p1), (4.1)
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k1

p2
p1

k2

ψ̄ ψ

Am
µ An

ν

ψ

An
ν

ψ̄

Am
µ Am

µ

ψ̄

An
ν

ψ

Am
µ

ψ̄

An
ν

ψ

= + +

Figure 11: Skeleton expansion of the kernel appearing in the SDE for the trilinear quark-gluon

vertex [see diagram (c) of figure 10]. Black, white, and gray blobs denote 1PI functions, connected

functions, and SD kernels, respectively.

where the kernel KAAψψ̄ is shown in figure 11. Using the STI of the kernel KAm
µ A

n
νψψ̄

given

in eq. (D.29), we obtain from (4.1) four terms, to be denoted by (s1), (s2), (s3) and (s4), i.e.,

(c)P = (s1) + (s2) + (s3) + (s4), (4.2)

with

(s1) = gfam
′n′

gαν′

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)ΓcmAn

νA
∗γ
d

(k2,−k1 − k2)ΓAd
γψψ̄

(p2,−p1),

(s2) = gfam
′n′

gαν′Γψψ̄(p1)

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)KAn

νψc
mψ̄∗(p2, k1,−p1),

(s3) = gfam
′n′

gαν′

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)KAn

νψ
∗ψ̄cm(p2,−p1, k1)Γψψ̄(p2),

(s4) = gfam
′n′

gαν′

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)ΓcmA∗γ

d
ψψ̄(k2, p2,−p1)ΓAd

γA
n
ν
(k2). (4.3)

Next, using eqs. (E.9), (E.14) and (E.15), it is fairly straightforward to demonstrate

that

(s1) = −ΓΩa
αA

∗γ
d

(−q)ΓAd
γψψ̄

(p2,−p1),

(s2) = −Γψψ̄(p1)ΓψΩa
αψ̄

∗(q,−p1),

(s3) = −Γψ∗ψ̄Ωa
α
(−p1, q)Γψψ̄(p2). (4.4)

Evidently, (s1) gives rise to the PT propagator-like term, while (s2) and (s3) generate the

terms that in the usual S-matrix PT would vanish on-shell, due to the (all-order) spinor

equations of motion Γψψ̄(p2)u(p2)
∣∣
/p
2
=m

= 0, and ū(p1)Γψψ̄(p1)
∣∣
/p
1
=m

= 0. Of course, in

our case we are not allowed to use the equations of motion, given that the quark legs are

considered to be off-shell.

Let us finally look at the term (s4), and show how it combines with the remaining Rξ
diagrams to generate the BFM quark-gluon vertex Γ bAψψ̄. To this end, using eq. (D.11)

and the FPE satisfied by the 1PI function ΓcA∗ψψ̄, we write (s4) = (s4a) + (s4b), with

(s4a) = −igfam
′dgαγ

∫

k1

Dm′m(k1)ΓcmA∗γ
d
ψψ̄(k2, p2,−p1),

(s4b) − gfam
′n′

gαν′

∫

k1

δdn
′ kν

′

2

k2
2

Dm′m(k1)Γcmc̄dψψ̄(k2, p2,−p1). (4.5)
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)(0) (iDn′n)(−Γ′
cm′ c̄n′ ) ××

= +

Figure 12: The Schwinger-Dyson equation (4.9) satisfied by the ghost propagator.

The general structure of these two terms suggests that (s4a) should give rise to the ghost

quadrilinear vertex, while (s4b), when added to diagram (e), should symmetrize the trilin-

ear ghost gluon coupling. It turns out that this expectation is essentially correct, but its

realization is not immediate, mainly due to the fact that (s4b) contains a tree-level instead

of a full ghost propagator [(k2
2)

−1 instead of D(k2)], while (s4a) can reproduce, at most, dia-

gram (f̂) of figure 10, but not (ĝ). The solution to this apparent mismatch is rather subtle:

one must employ the SDE satisfied by the ghost propagator, shown in Fig 12. This SDE is

common to both the Rξ-gauge and the BFM, given that there are no background ghosts.

To see how this works in detail, add and subtract to eq. (4.5) the missing term (see

figure 13), obtaining

(s4a) = −igfam
′dgαγ

∫

k1

Dm′m(k1)
[
ΓcmA∗γ

d
ψψ̄(k2, p2,−p1)

− Γ′
cgA∗γ

d
(k2)iD

gg′(k2)Γcmc̄g′ψψ̄(k2, p2,−p1)
]

= −igfam
′dgαγ

∫

k1

Dmm′

(k1)Kcm′A∗γ
d
ψψ̄(k2, p2,−p1) (4.6)

(s4b) = −gfam
′n′

gν
′

α

∫

k1

[
δdn

′ k2ν′

k2
2

− Γ′

cgA∗n′

ν′

(k2)D
gd(k2)

]
×

×Dm′m(k1)Γcmc̄dψψ̄(k2, p2,−p1), (4.7)

where the auxiliary function Γ′
cA∗ has been defined in eq. (E.7), and is given by ΓcA∗ minus

its tree-level part. Using eq. (E.5), we can then rewrite (s4a) as

(s4a) = ig2fam
′dfdsegασ

∫

k1

∫

k3

Dm′m(k1)D
ee′(k3)∆

σσ′

ss′ (k4) ×

×
[
Γ
cmAs′

σ′
c̄e′ψψ̄

(k3, k4, p2,−p1) − iΓ
cgAs′

σ′
c̄e′

(k3, k4)D
gg′(k2)Γcmc̄g′ψψ̄(k2, p2,−p1)

]

= (f̂) + (ĝ). (4.8)

We next turn to (s4b) and consider the ghost SD equation of figure 12. One has

iDdn′

(k2) = i
δdn

′

k2
2

+ i
δdg

k2
2

[
−Γ′

cg c̄g′
(k2)

]
iDg′n′

(k2), (4.9)

where, as before, Γ′
cg c̄g′

is given by Γcg c̄g′ minus its tree-level part. Multiplying the above
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ψ̄ ψ

cm

k1

p2

p1

k2

ψ̄ ψ ψ̄ ψ

cmcm

= +

d, γ

ψ̄ ψ ψ̄ ψ

cmcm A
∗γ
d

A
∗γ
d

= +

d, γ

A
∗γ
d

Figure 13: Diagrammatic decomposition of the kernel KcmA
∗γ

d
ψψ̄. The second term is the one

added (and subtracted) to the original sum (s4a) + (s4b) of eq. (4.5). After replacing the gluon

anti-field A∗γ
d by the corresponding composite operator (second line), taking into account the extra

structure provided by the (c)P term, this kernel furnishes the BFM terms (f̂) + (ĝ) [see eq. (4.8).]

equation by k2
2 , using the FPE (C.1) and factoring out a k2ν′ we get the relation

k2ν′D
dn′

(k2) = δdn
′ k2ν′

k2
2

− Γ′
cdA∗g

ν′
(k2)D

gn′

(k2)

= δdn
′ k2ν′

k2
2

− Γ′

cgA∗n′

ν′

(k2)D
gd(k2) . (4.10)

Therefore, we obtain

(s4b) = −gfam
′n′

∫

k1

k2αD
m′m(k1)D

n′n(k2)Γcmc̄nψψ̄(k2, p2,−p1). (4.11)

Adding this last contribution to diagram (e) we finally arrive at

(e) + (s4b) = gfam
′n′

∫

k1

(k1 − k2)αD
m′m(k1)D

n′n(k2)Kcmc̄nψψ̄(k2, p2,−p1)

= (ê). (4.12)

Next, observe that the graphs (a), (b), and (d) of figure 10 can be converted to hatted

ones automatically (see the corresponding tree-level Feynman in appendix F), and that

(c)F = (ĉ) since in the BFG ΓF = Γ
(0)
bAAA

. Thus,

iΓAa
αψψ̄

(p2,−p1) = −ΓΩa
αA

∗γ
d

(−q)ΓAd
γψψ̄

(p2,−p1) − Γψ∗ψ̄Ωa
α
(−p1, q)Γψψ̄(p2) (4.13)

−Γψψ̄(p1)ΓψΩa
αψ̄

∗(q,−p1)+[(â)+(̂b)+(ĉ)+(d̂)+(ê)+(f̂)+(ĝ)]aα.

The sum of diagrams in the brackets is nothing but the kernel expansion of the SDE

governing the vertex Γ bAψψ̄
, i.e.,

iΓ bAa
αψψ̄

(p2,−p1) = [(â) + (̂b) + (ĉ) + (d̂) + (ê) + (f̂) + (ĝ)]aα. (4.14)
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After this identification, it is clear that eq. (4.13) coincides with the full BQI of

eq. (E.13), namely

iΓ bAa
αψψ̄

(p2,−p1) = [igγαδ
ad + ΓΩa

αA
∗γ
d

(−q)]ΓAd
γψψ̄

(p2,−p1)

+Γψ∗ψ̄Ωa
α
(−p1, q)Γψψ̄(p2) + Γψψ̄(p1)ΓψΩa

αψ̄
∗(q,−p1). (4.15)

In summary, the application of the PT to the conventional SDE for the quark-gluon

vertex (i) has converted the initial kernel expansion [graphs (a) to (e) in figure 10]

into the graphs corresponding to the kernel expansion of the vertex Γ bAψψ̄; (ii) all other

pinching terms extracted from the original diagram (c) are precisely the combinations of

auxiliary Green’s functions appearing in the BQI that relates the initial vertex ΓAψψ̄ with

the final vertex Γ bAψψ̄
.

Notice at this point that the skeleton expansion of the multi-particle kernels appearing

in the SDE for Γ bAψψ̄ is still written in terms of the conventional fully dressed vertices and

propagators (involving only quantum fields). Thus, eq. (4.14) is not manifestly dynamical,

i.e., it does not involve the same unknown quantities on the right and left hand side; this

situation is exactly analogous to the gluon propagator case discussed in subsection 2.5.

Specifically, in order to convert (4.14) into a genuine SDE, one has two possibilities, both

involving the use of the above BQI: (i) substitute the l.h.s. of eq. (4.15) into the r.h.s.

of eq. (4.14) and solve for the conventional ΓAψψ̄ vertex, or (ii) invert eq. (4.15) and use

it to convert every ΓAψψ̄ vertex appearing in the r.h.s. of eq. (4.14) into a Γ bAψψ̄
vertex.

It would seem that the latter option is operationally more cumbersome, especially taking

into account that a similar procedure has to be followed for all the Green’s functions that

appear in the coupled system of SDEs that one considers.

4.2 Three-gluon vertex

The construction of the PT three-gluon vertex proceeds in a very similar way, with some

additional subtleties that we will spell out in detail in what follows. We emphasize that

the purpose of this exercise is to generate dynamically the vertex Γ bAAA
and not the fully

Bose-symmetric vertex Γ bA bA bA
studied in [15, 29]. The reason is that it is the former vertex

that appears in the SDEs for the gluon propagator [see, e.g., diagram (d1) in figure 6],

making it the relevant object to consider at this level.

We start by considering the conventional [4] SDE for the three gluon vertex (figure 14),

and carry out the standard ΓP + ΓF decomposition to the tree-level vertex of diagram (c),

which is the only one we will modify in our construction.

We then find

(c)P = −
1

2
gfam

′n′

∫

k1

(gαν′k1µ′ − gαµ′k2ν′)∆
µ′µ
m′m(k1)∆

ν′ν
n′n(k2)KAm

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1)

= gfamn
′

gαν′

∫

k1

1

k2
1

∆ν′ν
n′n(k2)k

µ
1KAm

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1), (4.16)

and the kernel KAAAA is shown in figure 15.

The next step is to apply the STI of eq. (D.36), and scrutinize the various terms,

denoted again by (s1), (s2), (s3), and (s4).
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Figure 14: The SDE of the three-gluon vertex. The symmetry factors of the Rξ (first and second

line of the figure) diagrams are s(a, b) = 1. s(c) = 1/2, s(d) = 1/6, s(e) = −1, s(f, g) = 1/2.

In the third line we show the additional topologies present in the BFM version of the equation

[s(ĥ, î, l̂, m̂) = −1], generated during the PT procedure.

For the first three terms, we get the following results

(s1) = gfam
′n′

gαν′

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)ΓcmAn

νA
∗γ
d

(k2,−k1 − k2)ΓAd
γA

r
ρA

s
σ
(p2,−p1)

= −ΓΩa
αA

∗γ
d

(−q)ΓAd
γA

r
ρA

s
σ
(p2,−p1),

(s2) = gfam
′n′

gαν′

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)KcmAn

νA
s
σA

∗γ
d

(k2,−p1, p2)ΓAd
γA

r
ρ
(p2)

= −ΓΩa
αA

s
σA

∗γ
d

(−p1, p2)ΓAd
γA

r
ρ
(p2),

(s3) = gfam
′n′

gαν′

∫

k1

Dm′m(k1)∆
νν′

n′n(k2)KcmAn
νA

r
ρA

∗γ
d

(k2, p2,−p1)ΓAd
γA

s
σ
(p1)

= −ΓΩa
αA

r
ρA

∗γ
d

(p2,−p1)ΓAd
γA

s
σ
(p1). (4.17)

As in the case of the quark-gluon vertex, (s1) represents the propagator-like contribu-
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Figure 15: Skeleton expansion of the kernel appearing in the SDE for the three-gluon vertex

[diagram (c) of figure 14]

tion that in the S-matrix PT would be allotted to the new two point function Γ̂AA. Notice

that this term is equal (modulo the external vertex) to the one found in the quark-gluon ver-

tex case; this is the manifestation of the well-known property of the process-independence

of the PT algorithm (as already noticed in our previous one-loop analysis): the propagator-

like contributions do not depend on the details of the external (embedding) particles. As

for (s2) and (s3), they correspond again to terms that would vanish on-shell, but now are

retained in the final answer due o the off-shell condition of the external legs.

Finally, one has to consider the term (s4), given by

(s4) = gfam
′n′

gαν′

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)KcmAr

ρA
s
σA

∗γ
d

(p2,−p1, k2)ΓAd
γA

n
ν
(k2), (4.18)

which again can be written as the sum of the following two terms

(s4a) = −igfam
′dgαγ

∫

k1

Dm′m(k1)KcmA∗γ
d
Ar

ρA
s
σ
(k2, p2,−p1), (4.19)

(s4b) = −gfam
′n′

gαν′

∫

k1

δdn
′ kν

′

2

k2
2

Dm′m(k1)Kcmc̄dAr
ρA

s
σ
(k2, p2,−p1). (4.20)

The kernel Kcc̄AA is defined by replacing in eq. (D.39) every anti-field leg A∗ by the corre-

sponding anti-ghost field c̄. As before, (s4b) has a tree-level ghost propagator, while (s4a)

misses a diagram that we need to add and subtract to solve the two problems simultane-

ously. Even so, we are still missing the diagrams (l̂) and (m̂) of figure 14; they will be

generated by the tree-level contribution appearing in the SDE of the auxiliary function

ΓcAA∗ . In order to isolate this contribution as early as possible, let us write

KcmAr
ρA

s
σA

∗γ
d

(p2,−p1, k2) = K′
cmAr

ρA
s
σA

∗γ
d

(p2,−p1, k2)

+iΓcmAs
σ c̄

e′ (−p1, ℓ)iD
ee′(ℓ)iΓ

(0)

ce′Ar
ρA

∗γ
d

(p2, k2)

+iΓ
(0)

ceAs
σA

∗γ
d

(−p1, k2)iD
ee′(ℓ′)iΓcmAr

ρc̄
e′ (p2,−ℓ

′)

= K′
cmAr

ρA
s
σA

∗γ
d

(p2,−p1, k2) − igfdre
′

gγρΓcmAs
σ c̄

e′ (−p1, ℓ)D
ee′(ℓ)

−igfdsegγσD
ee′(ℓ′)ΓcmAr

ρc̄
e′ (p2,−ℓ

′), (4.21)

where the prime denotes that the ΓcAA∗ that appears in the 1PR terms starts at one-loop.
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Figure 16: The 1PR terms appearing in KcmA
∗γ

d
Ar

ρA
s
σ

contain a tree-level contribution generating

the missing BFM topologies. Here we show the case for (l̂); a symmetric term generates (m̂). The

first term on the r.h.s. is part of the skeleton expansion of diagram (ĥ) of figure 14. Notice that the

l.h.s. is simply a pictorial representation of the r.h.s., taking advantage of the notation introduced

in figure13; the anti-fields are static sources and do not propagate.

We then find (see also figure 16)

(s4a) = −igfam
′dgαγ

∫

k1

Dm′m(k1)K
′
cmAr

ρA
s
σA

∗γ
d

(p2,−p1, k2)

−g2fam
′dfdre

′

gαρ

∫

k1

Dm′m(k1)D
e′e(ℓ)ΓcmAs

σ c̄
e′ (−p1, ℓ)

−g2fam
′dfdse

′

gασ

∫

k1

Dm′m(k1)D
e′e(ℓ′)ΓcmAr

ρc̄
e′ (p2,−ℓ

′)

= (s′4a) + (l̂) + (m̂). (4.22)

For generating the remaining terms one proceeds as in the quark case, writing (see fig-

ure 17)

(s′4a) = −igfam
′dgαγ

∫

k1

Dm′m(k1)
[
K′
cmA∗γ

d
Ar

ρA
s
σ
(k2, p2,−p1)

− Γ′
cgA∗γ

d
(k2)iD

gg′(k2)Kcmc̄g′Ar
ρA

s
σ
(k2, p2,−p1)

]

= −igfam
′dgαγ

∫

k1

Dm′m(k1)K
full
cmA∗γ

d
ψψ̄(k2, p2,−p1) (4.23)

(s4b) = −gfam
′n′

gν
′

α

∫

k1

[
δdn

′ k2ν′

k2
2

− Γ′

ceA∗n′

ν′

(k2)D
ed(k2)

]
×

×Dm′m(k1)Kcmc̄dAr
ρA

s
σ
(k2, p2,−p1). (4.24)

Then, using eq. (E.5) (which can be safely done now, since tree-level contribution has been

already taken into account) and eq. (4.10), one finds

(s′4a) = (ĥ) + (̂i) (4.25)

(s4b) = −gfam
′n′

∫

k1

k2αD
m′m(k1)D

n′n(k2)Kcmc̄nAr
ρA

s
σ
(k2, p2,−p1), (4.26)

so that

(s4b) + (e) = (ê). (4.27)
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Figure 17: Diagrammatic decomposition of the SD kernel Kfull
cmA

∗γ

d
Ar

ρA
s
σ

defined in eq. (4.23). The

first term represents the kernel K′

cmA
∗γ

d
Ar

ρA
s
σ
; therefore the ΓcAA∗ appearing in the corresponding

1PR terms start at one-loop. The second term is the one added (and subtracted) to the original sum

(s′4a) + (s4b). After replacing the gluon anti-field A∗γ
d with the corresponding composite operator

(second line), this kernel generates the BFM terms (ĥ) + (̂i).

Using the tree-level Feynman rules (see appendix F), it is straightforward to establish

that the graphs (b), (d), (f), and (g) can be converted to hatted ones automatically, and

that (c)F = (ĉ). Thus, collecting all the pieces we have, and using the standard PT

decomposition (2.12) on the tree-level contribution (a), we get

iΓAa
αA

r
ρA

s
σ
(p2,−p1) = −ΓΩa

αA
∗γ
d

(−q)ΓAd
γA

r
ρA

s
σ
(p2,−p1) − ΓΩa

αA
s
σA

∗γ
d

(−p1, p2)ΓAd
γA

r
ρ
(p2)

−ΓΩa
αA

r
ρA

∗γ
d

(p2,−p1)ΓAd
γA

s
σ
(p1) + [(â) + (̂b) + (ĉ) + (d̂) + (ê)

+(f̂) + (ĝ) + (ĥ) + (̂i) + (l̂) + (m̂)]arsαρσ − igfarsΓP(p2,−p1). (4.28)

As in the previous case, the sum of diagrams in the brackets is nothing but the kernel

expansion of the SDE governing the vertex Γ bAAA, i.e.,

iΓ bAa
αA

r
ρA

s
σ
(p2,−p1) = [(â) + (̂b) + (ĉ) + (d̂) + (ê)

+(f̂) + (ĝ) + (ĥ) + (̂i) + (l̂) + (m̂)]arsαρσ . (4.29)

This in turn implies that eq. (4.28) represents the BQI of eq. (E.17) up to the last (tree-

level) term in the r.h.s.. Of course this tree-level discrepancy is to be expected since the PT

algorithm cannot possibly work at tree-level if the external legs are amputated, as is the

case in the SDEs we are considering. To be sure, if we start from the tree-level Γ
(0)
AAA only,

i.e., without hooking (two of) the external legs to (conserved) external currents, we can still

carry out the decomposition of eq. (2.12), but the ΓP term will have nothing to act upon.

Notice finally that the discussion following eq. (4.15) the SDE for the gluon-quark

vertex applies with minimal modification to the three-gluon vertex case discussed here.

– 39 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
3

4.3 The gluon propagator

In this section we turn to the SDE of the gluon self-energy. From the technical point of view

the construction is somewhat more involved compared to that presented for the vertices,

simply because the PT decomposition of eq. (2.12) must be carried out on both sides of the

self-energy diagram. Put in a different way, now we must convert to background gluons not

one but two external gluons. To the best of our knowledge, the most efficient procedure to

follow consists of the three basic steps described below [13].

4.3.1 First step

The starting point is diagram (a1) of figure 1. Following the PT procedure, we decompose

the tree-level three-gluon vertex according to (2.12) and concentrate on the pinch part.

We then get

(a1)
P = −

i

2
gfam

′n′

∫

k1

(gαν′k1µ′ − gαµ′k2ν′)∆
µ′µ
m′m(k1)∆

ν′ν
n′n(k2)ΓAm

µ A
n
νA

b
β
(k2,−q)

= igfamn
′

gαν′

∫

k1

1

k2
1

∆ν′ν
n′n(k2)k

µ
1 ΓAm

µ A
n
νA

b
β
(k2,−q). (4.30)

At this point the application of the STI of eq. (D.9) together with eq. (D.11) and the

FPE (C.5), results in the following terms

(a1)
P = igfam

′n′

gαν′

∫

k1

Dm′m(k1)∆
ν′ν
n′n(k2)ΓcmAn

νA
∗γ
d

(k2,−q)ΓAd
γA

b
β
(q)

+gfam
′dgαγ

∫

k1

Dm′m(k1)ΓcmAb
β
A∗γ

d
(−q, k2)

−igfam
′n′

gαν′

∫

k1

δdn
′ kν

′

2

k2
2

Dm′m(k1)ΓcmAb
β
c̄d(−q, k2)

= (s1) + (s2) + (s3). (4.31)

Clearly, using the SDE of the auxiliary function ΓΩA∗ , shown in eq. (E.9), one has

immediately that

(s1) = −iΓΩa
αA

∗γ
d

(q)ΓAd
γA

b
β
(q). (4.32)

This would be half of the pinching contribution coming from the vertex in the S-matrix PT.

As far as the (s2) and (s3) terms are concerned, let us start by adding and subtracting

to them the expression needed to convert the tree-level ghost propagator of (s3) into a full

one; making use of the ghost SDE (4.10) we then get

(s2) =−gfam
′dgαγ

∫

k1

iDm′m(k1)
[
iΓcmAb

β
A∗γ

d
(−q, k2)+Γ′

cg′A∗γ
d

(k2)D
g′g(k2)ΓcmAb

β
c̄g(−q, k2)

]

(s3) = −igfam
′n′

∫

k1

k2αD
m′m(k1)D

n′n(k2)ΓcmAb
β
c̄n(−q, k2) (4.33)

The second term symmetrizes the trilinear ghost-gluon coupling, and one has

(s3) + (a3) = (b3), (4.34)
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Âa
α

Ab
β

q

++

(b1)

=

+

(b3)

+

(b4)

+

(b9)

+

(b10)

+

(b11)

+ +

(b7) (b8)(b5) (b6)

+

(b2)

Figure 18: Schwinger-Dyson equation satisfied by the gluon self-energy −Γ bAA
. The symmetry

factors of the diagrams are s(b1, b2, b6) = 1/2, s(b5) = 1/6, and all the remaining diagrams have

s = −1.

where (b3) is shown in figure 18. The term (s2) will finally generate all the remaining terms.

To see how this happens, we denote by (s2a) and (s2b) the two terms appearing in the square

brackets of (s2), and concentrate on the first one. Making use of the SDE (E.8) satisfied

by the auxiliary function ΓcAA∗ and the decomposition (E.11) of the kernel appearing in

the latter, we get

(s2a) = g2fam
′dfmdbgαβ

∫

k1

Dm′m(k1)

+g2fam
′dfdn

′s′gασ′

∫

k1

∫

k3

Dm′m(k1)∆
σ′σ
s′s (k3)D

n′n(k4)KcmAb
β
As

σ c̄
n(−q, k3, k4)

= (b4) + (b7) + (b8) + (b10). (4.35)

Using instead the SDE satisfied by ΓcA∗, shown in eq. (E.7), we obtain

(s2b) = ig2fam
′dfdsegσα

∫

k1

∫

k3

Dm′m(k1)∆
ss′

σσ′(k3)D
ee′(k4)Γcg′Aσ′

s′
c̄e′

(k3, k4)D
g′g(k2) ×

×ΓcmAb
β
c̄g(−q, k2)

= (b9). (4.36)

Finally, since diagrams (a2), (a4) (a5) and (a6) carry over to the corresponding BFM ones

(b2), (b5), (b6) and (b11) and (a1)
F = (b1), we have the final identity

(s2) + (s3) +

[
(a1)

F +
6∑

i=2

(ai)

]
=

11∑

i=1

(bi), (4.37)

and therefore

−ΓAa
αA

b
β
(q) = −iΓΩa

αA
∗γ
d

(q)ΓAd
γA

b
β
(q) − Γ bAa

αA
b
β
(q), (4.38)

which is the BQI of eq. (E.2).
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Figure 19: Schwinger-Dyson equation satisfied by the gluon self-energy −Γ
A bA

. The symmetry

factors of the diagrams are s(c1, c2, c6) = 1/2, s(c3, c4, c7) = −1, s(c5) = 1/6.

4.3.2 Second step

The second step in the propagator construction is to employ the obvious relation

Γ bAa
αA

b
β
(q) = Γ

Aa
α

bAb
β
(q), (4.39)

that is to interchange the background and quantum legs (the SDE for the self-energy −ΓA bA

is shown in figure 19). This apparently trivial operation introduces a considerable simpli-

fication. First of all, it allows for the identification of the pinching momenta from the

usual PT decomposition of the (tree-level) Γ appearing in diagram (c1) of figure 19 [some-

thing not directly possible from diagram (b1)]; thus, from the operational point of view,

we remain on familiar ground. In addition, it avoids the need to employ the (formidably

complicated) BQI for the four-gluon vertex; indeed, the equality between diagrams (c5),

(c6), (c7) of figure 19 and (d5), (d6), (d11) of figure 6, respectively, is now immediate [as it

was before, between the diagrams (a4), (a5), (a6) and (b5), (b6), (b11), respectively].

4.3.3 Third step

We now turn to diagram (c1) and concentrate on its pinching part, given by

(c1)
P = igfamn

′

gαν′

∫

k1

1

k2
1

∆ν′ν
n′n(k2)k

µ
1 Γ

Am
µ A

n
ν

bAb
β
(k2,−q). (4.40)

Notice the appearance of the full BFM vertex ΓAA bA instead of the standard ΓAAA (in the

Rξ). The STI satisfied by the former vertex has been derived in eq. (D.25). Now, the first

three terms, (s1), (s2) and (s3), appearing in this STI, will give rise to PT contributions

exactly equal to those encountered in first step described above, the only difference being

that the Abβ field appearing there is now a background field Âbβ. Thus, following exactly

the reasoning described before, we find [see again figure 6 for the diagrams corresponding

to each (di)]

(s1) → −iΓΩa
αA

∗e
ǫ

(q)Γ
Ae

ǫ
bAb

β
(q), (4.41)

(s2) + (s3) + (c3) = (d3) + (d4) + (d7) + (d8) + (d9) + (d10). (4.42)
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Figure 20: Summary of the PT procedure employed in the text in order to construct the new PT

SDE of the gluon propagator.

For the term (s4) we have instead

(s4) → g2fam
′ef ebmgαµ′gβµ

∫

k1

∆µ′µ
m′m(k1). (4.43)

Clearly this has a tadpole-like structure; in particular, it is immediate to prove that when

added to (c2) it will convert it into (d2)

(s4) + (c2) = (d2). (4.44)

Thus, since as always (c1)
F = (d1) we get

(s2) + (s3) + (s4) +

[
(c1)

F +
7∑

i=2

(ci)

]
=

11∑

i=1

(di), (4.45)

and therefore

−Γ
Aa

α
bAb

β
(q) = −iΓΩa

αA
∗e
ǫ

(q)Γ
Ae

ǫ
bAb

β
(q) − Γ bAa

α
bAb

β
(q), (4.46)

which is the BQI of eq. (E.3). This concludes our proof.

In figure 20 we summarize the steps that allowed the successful construction of the

SDE for the PT propagator; putting together the three steps above, we have been able to

generate the complete BQI of eq. (E.4), namely

iΓ bAa
α

bAb
β
(q) = iΓAa

αA
b
β
(q) + 2ΓΩa

αA
∗γ
d

(q)ΓAd
γA

b
β
(q) − iΓΩa

αA
∗γ
d

(q)ΓAd
γA

e
ǫ
(q)ΓΩb

β
A∗ǫ

e
(q). (4.47)

According to the PT rules put forward in section 3.5, on the one hand the PT gluon two-

point function iΓ̂AA would coincide with the r.h.s. of eq. (4.47) after dropping the terms

proportional to the auxiliary function ΓΩA∗ , since these would cancel anyway after adding

the contribution coming from the corresponding vertices. On the other hand, recalling that

ΓΩαA∗

β
coincide with Λαβ , and observing that the only relevant part in the identity above

of such functions is the one proportional to the metric tensor (due to the transversality of

the gluon two-point function ΓAA), it is immediate to show, using eq. (2.6) and the relation

−ΓAαAβ
= Παβ, that eq. (4.47) can be cast in the form of the SDE shown in eq. (2.36).
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4.4 How to truncate the new SDEs

After constructing the new SDE series, let us focus on its truncation properties, both from

the theoretical as well as the practical point of view.

As has been stated repeatedly, the main theoretical advantage of the new SD series is

that it allows for a systematic gauge-invariant truncation, in the sense described in subsec-

tion 2.5. There we focused on how to truncate the SDE for the gluon self-energy, shown in

figure 6, by exploiting the fact that the various fully dressed graphs organize themselves

into gauge-invariant subsets [those appearing in eq. (2.41)]. The practical importance of

this property is the following: one can reduce the number of coupled SDE that one must

include in order to maintain the gauge (or BRST) symmetry of the theory intact, as re-

flected, for example in the validity of eq. (1.1). Thus, in the case of pure Yang-Mills, within

this new formulation, the minimum number of equations that one must consider is only

two: The SDE for the gluon self-energy, given by the first gauge-invariant subset only (i.e.,

[(d1) + (d2)]αβ in figure 6) and the SDE for the full three-gluon vertex, shown in figure 14

(which is instrumental in assuring the gauge invariance of the subset chosen). This is to be

contrasted to what happens within the conventional formulation: there the SDEs for all

vertices must be considered, or else eq. (1.1) is violated (which is what usually happens).

Notice an important point, however: the present analysis does not furnish a simple

diagrammatic truncation, analogous to that of the gluon self-energy, for the SDE of the

three gluon vertex Γ bAαAµAν
(k1, k2), shown in figure 14. Thus, if one were to truncate the

SDE for the three-gluon vertex by keeping any subset of the graphs appearing in figure 14,

one would violate the validity of the all-order WI of eq. (2.37); this, in turn, would lead

immediately to the violation of eq. (1.1), thus making the entire truncation scheme collapse.

The strategy one should adopt is instead the following. Given that the proposed

truncation scheme hinges crucially on the validity of eq. (2.37), one should start out with

an approximation that manifestly preserves it. The way to enforce this, familiar to the

SDE practitioners already from the time of QED, is to resort to the “gauge-technique” [47],

namely “solve” the WI of eq. (2.37). Specifically, one must express the three-gluon vertex

as a functional of the corresponding self-energies, in such a way that (by construction) its

WI is automatically satisfied. For example, an Ansatz with this property would be

Γ bAαAµAν
(k1, k2) = Γ

(0)
bAαAµAν

(k1, k2) − i
(k2 − k1)α
k2
2 − k2

1

[Πµν(k2) − Πµν(k1)] ; (4.48)

contracting the r.h.s. with qα = (k1 + k2)α yields automatically the WI of eq. (2.37).

Thus, the minimum amount of ingredients for initiating a self-consistent non-perturbative

treatment is the SD for the gluon self-energy, consisting of [(d1) + (d2)]αβ , supplemented

by an Ansatz for the three-gluon vertex like the one given in (4.48). Note that the “gauge-

technique” leaves the transverse (i.e., automatically conserved) part of the vertex unde-

termined. This is where the SDE for the vertex enters; it is used precisely to determine

the transverse parts. Specifically, following standard techniques [31, 29], one must expand

the vertex into a suitable tensorial basis, consisting of fourteen independent tensors, and

then isolate the transverse subset. This procedure will lead to a large number of coupled

integral equations, one for each of the form-factors multiplying the corresponding tensorial
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structures, which may or may not be tractable. However, at this point, one may sim-

plify the resulting equations (e.g., linearize, etc) without jeopardizing the transversality

of Πµν , which only depends on the “longitudinal” part of the vertex, i.e., the one deter-

mined by (4.48). Thus, the transverse parts will be approximately determined, but gauge

invariance, as captured by qµΠµν = 0, will remain exact.

Note by the way that the methodology described above constitutes, even to date,

the standard procedure even in the context of QED, where the structure of the SDE is

much simpler, given that the SDE for the photon contains one single graph [diagram (a6)

in figure 1], and the photon-electron vertex satisfies automatically a naive all-order WI.

Thus, while the PT approach described here replicates QED-like properties at the level of

the SDEs of QCD, in our opinion a striking fact in itself, does not make QCD easier to

solve than QED.

The reader should appreciate one additional point: any attempt to apply the approach

described above in the context of the conventional SDE is bound to lead to the violation

of the transversality of Πµν , because (i) the vertices satisfy complicated STI’s instead of

the WIs of eq. (2.37)–(2.40), a fact that makes the application of the “gauge-technique”

impractical, and (ii) even if one came up with the analogue of eq. (4.48) for all vertices,

one should still keep all self-energy diagrams in figure 1 to guarantee that qµΠµν = 0. From

this point of view, the improvement of the present approach over the standard formulation

becomes evident.

Finally, one should be aware of the fact that there is no a-priori guarantee that the

gauge-invariant subset kept (i.e., [(d1) + (d2)]αβ) capture necessarily most of the dynamics,

or, in other words, that they represent the numerically dominant contributions (however,

for a variety of cases it seems to be true [42]). But, the point is that one can systematically

improve the picture by including more terms, without worrying that the initial approxi-

mation is plagued with artifacts, originating from the violation of the gauge invariance or

of the BRST symmetry.

5. Conclusions

In this article we have presented a detailed derivation of a new SD series for non-Abelian

gauge theories, based on the PT and its correspondence with the BFM. The procedure

we followed for constructing the PT SDE is identical to that followed in the perturbative

construction, without any additional new assumption.

Our starting point is the conventional SDEs for the vertices and the gluon self-energy

written in the Feynman gauge. The first step in the derivation is to simply carry out the PT

decomposition of the elementary (tree-level) three-gluon vertex, Γαµν given in eq. (2.12), to

the external three-gluon vertices appearing in the corresponding diagrams of the standard

SD series. The part of Γαµν denoted by ΓP
αµν contains longitudinal momenta which get

contracted with the kernels or the fully-dressed Green’s functions appearing inside the

diagram containing the original Γαµν , triggering the corresponding STIs. These STIs, in

turn, contain pieces that, according to the well-established PT criteria, either form part

of the answer, in this case the diagrammatic expansion of the SDE for the corresponding
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Green’s function, or they are discarded from it. In section 4 we have worked out in detail

three cases: (i) the quark-gluon vertex, (ii) the three-gluon vertex, and (iii) the technically

more involved case of the gluon self-energy. It turns out that the diagrams comprising the

PT answer are identical to those corresponding to the BFG. Thus, the resulting new SDEs,

generated after the characteristic PT rearrangements have taken place, and the PT criterion

for identifying the answer has been employed, correspond to the BFM SDEs, written in the

BFG. This is an important result, because it proves the PT-BFG correspondence at the

level of the SDE of the theory; obviously, all results on this point presented in the literature

so far are included in the result presented here, given that any order in perturbation theory

is already contained in the SDEs we consider.

An additional important result, obtained from the same procedure, is the diagrammatic

derivation of the BQIs, which, to date, have only been formally derived in the context of

the BV formalism. The way that the terms comprising the BQIs appear in the present

analysis is automatic: they are simply the leftovers of the PT construction, i.e., the pieces

that have been discarded from the PT answer.

As explained in detail in [37, 13], and mentioned also in section 2, the new SDE series

for the gluon self-energy contains fully dressed vertices that satisfy simple, QED-like (i.e.,

tree-level-like) WIs, instead of STIs. This fact allows for the truncation of the SDE series

while maintaining the transversality of the answer at any step.

Returning to the construction of the gluon SDE, a crucial ingredient for the proof

has been the interchange of background and quantum legs done in subsection 4.3.2, i.e.,

Γ bAA
→ Γ

A bA
(see also figure 20). As we have mentioned there this allowed us to (i) identify

the pinching momenta from the usual PT decomposition, and (ii) avoid the use of some

otherwise indispensable multi-leg BQIs. But more importantly it unveils a recursive pat-

tern that can be used to generalize the construction to n-point Green’s functions with n

arbitrary. Work in this direction is already in progress.

As we have emphasized in the Introduction, the BFG is singled out dynamically when

carrying out the PT rearrangement of a physical quantity, such as an S-matrix element

or a Wilson loop. In particular, after the full cancellation of all (effectively propagator-

like) gauge-dependent pieces has taken place, and after the vertices have been forced to

obey Abelian WIs, the resulting self-energy contribution (to be identified with the PT self-

energy) coincides with the BFM gluon self-energy, calculated in the BFG. In that sense

the BFG is very special, because it captures the net gauge-independent and universal (i.e.,

process-independent) contribution contained in any physical quantity. In practice, however,

one would like to be able to truncate gauge-invariantly (i.e., maintaining transversality) sets

of SDEs written in different gauges. This becomes particularly relevant, for example, when

one attempts to compare SDE predictions with lattice simulations, carried out usually in

the Landau gauge. One of the most powerful features of this formalism, not explored in

this article, is that it can be generalized to any other gauge choice. In particular, eq. (2.36)

maintains the same form, regardless of the gauge chosen. The way to accomplish this is to

use the “generalized” PT, developed in [41]. The generalized PT modifies the starting point

of the PT algorithm, namely eq. (2.12), distributing differently the longitudinal momenta
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between ΓF
αµν and ΓP

αµν . Specifically, the non-pinching part, i.e., the analogue of ΓF
αµν ,

must satisfy, instead of (2.13), a WI whose r.h.s. is the difference of two inverse tree-level

propagators in the gauge one wishes to consider. The way this works is the following. One

starts out with the conventional SDE in the chosen gauge, carrying out the generalized

PT vertex decomposition. Then, the action of the corresponding ΓP
αµν projects one to the

corresponding BFM gauge; this includes the covariant gauges, such as the Landau gauge,

or even non-covariant gauges, such as axial or light-cone gauges (for the way how to use

non-covariant gauges within the BFM framework, see [41]). This new SD series contains

full vertices that, even though they are in a different gauge, satisfy the QED-like WIs

given in eqs. (2.37) – (2.41). Therefore, the truncation properties of this SDE are the

same as those discussed in section 2 for the case of the Feynman gauge. The analogy is

completed by realizing that the BQIs in the corresponding gauge allow one to switch back

and forth from the conventional to the BFM Green’s function. Thus, one may obtain, for

example, transverse approximations for the gluon propagator in the conventional Landau

gauge by studying the SDE written in the BFM Landau gauge, computing the [1+G(q2)]2

in the same gauge, i.e., employ eq. (2.36) using for the diagrams on its r.h.s. the BFM

Feynman rules in the Landau gauge (see appendix). This Landau gauge SDE has already

been used in [42], in order to derive results for the gluon and ghost propagators that are in

qualitative agreement with recent lattice data; as explained there, particular care is needed

when taking the limit ξQ → 0.

It would be important, both from the theoretical point of view as well as for the

practical applications, to study in detail the renormalization properties of the new SDEs

(for a general discussion see the appendix B). For addressing this problem the intrinsically

non-perturbative renormalization method known as “displacement operator formalism” [43]

may prove to be particularly suitable.

It is also very appealing to believe that the SDE derived here may be actually obtained

from a variational principle, i.e., as a result of the extremization of an appropriate effective

action, as happens in the case of the CJT formalism [3]. Calculations in this directions are

already in progress.

Finally, it would be interesting to establish connections between the dynamics obtained

from the SDEs derived here and results based on the non-perturbative BFM formalism

developed in [44].
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A. Which way to pinch and why

Historically, the basic conceptual difficulty associated with the generalization of the PT
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beyond one loop has been to determine the origin of the pinching momenta. Let us assume

that, without loss of generality, one chooses from the beginning the conventional Feynman

gauge. Then, the only sources of possible pinching momenta are the three-gluon vertices.

The question is whether all such vertices must be somehow forced to pinch, or, in other

words, whether the standard PT decomposition of eq. (2.12) should be carried out to all

available three-gluon vertices. The problem with such an operation, however, is the follow-

ing: for the case of a three-gluon vertex nested inside a Feynman diagram, how does one

choose which is the “special” momentum? Or, in other words, which way is one supposed

to brake the Bose-symmetry of the vertex? Turns out that the solution to these questions

is very simple [30]: one should apply eq. (2.12) only to the vertices that have the physical

momentum incoming (or outgoing) in one of their legs (not mixed with virtual momenta);

the special leg is precisely the one carrying q, i.e., the physical momentum transfer ap-

pearing in the problem. We will call such a vertex “external”. All other vertices are not

to be touched, i.e., they should not be decomposed in any way; such vertices have virtual

momenta entering into every one of their three legs, and are called “internal” (see figure 21).

The reason why all other three-gluon vertices inside the loops should remain unchanged

(no splitting) can be best understood by resorting to the absorptive construction of the

PT [21 – 23]. The basic philosophy behind the absorptive construction is to emulate as much

as possible the text-book reconstruction of the real part of the vacuum polarization of QED

(containing say a muon-loop) from the tree-level cross-section for e+e− → µ+µ−, i.e., the

optical theorem, and a (once-subtracted) dispersion relation. As in QED, in the case of

the PT the basic observation also happens already at one loop: the PT subamplitudes

(self-energies, vertices, boxes) satisfy the optical theorem individually, in a way similar to

what happens with scalar theories and QED.

Specifically, let us write S = 1 + iT , and consider the forward scattering process

q(p1)q̄(p2) → q(p1)q̄(p2), with s = q2 = (p1 + p2)
2. Restricting ourselves to only gluonic

intermediate states, the PT amplitudes, at lowest order satisfy

ℑm〈qq̄|T [4]|qq̄〉ℓ =
1

2
×

1

2

∫

PS2g

[〈qq̄|T [2]|gg〉〈gg|T [2]|qq̄〉∗]ℓ, (A.1)

with
∫
PS2g

denoting the two-body phase space for massless gluons. In the equation above

the superscript [n] denotes the order of the corresponding amplitude in the coupling con-

stant g (when counting powers of g remember the couplings coming from the vertices with

the external particles); the subscript ℓ = 1, 2, 3 denotes, respectively, the propagator-,

vertex-, and box-like parts of either side (to recover the full optical theorem, one simply

sums both sides over ℓ). Finally, the extra factor of 1
2 is statistical, since the final state

gluons are considered as identical particles in the total rate.

The meaning of propagator-, vertex-, and box-like is clear as far as the l.h.s. of eq. (A.1)

is concerned: one must determine the imaginary (absorptive) parts of the three one-loop

PT subamplitudes obtained after casting the amplitude q(p1)q̄(p2) → q(p1)q̄(p2) into the

PT form, following the standard PT rules. To get these absorptive parts one may carry the

corresponding Cutkosky cuts to the various integrals, (including “unphysical” contributions
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(a) (b)

(c5) (c6) (c7) (c8)

q

(c1) (c2) (c3) (c4)

Figure 21: Left panel: Some examples of external ( indicated with an arrow) and internal vertices

(all the remaining). Diagram (a) has only internal three-gluon vertices, while diagram (b) has two

internal vertices and one external, indicated by the arrow. Right panel: The two- and three-particle

Cutkosky cuts (cutting through gluons only).

coming from ghost loops) or, equivalently, study where the various logarithms develop

imaginary parts.

Let us see now what propagator-, vertex-, and box-like means on the r.h.s., consisting

of the squared amplitude for the tree-level process q(p1)q̄(p2) → g(k1)g(k2) (with k1 and

k2 integrated over all available phase space). A PT-rearranged squared amplitude means

the following. Consider a normal squared amplitude, i.e., the product of two regular

amplitudes [remember that “product” means that they are also connected (multiplied) by

the corresponding polarization tensors]. Then each amplitude must be first cast into its

PT form, by again simply following the standard PT rules. However, this is not the end of

the story as far as the PT-rearrangement of the square is concerned. One must go through

the additional exercise of letting the longitudinal momenta coming from the polarization

vectors trigger a particular cancellation between the s-channel and the t-channel graphs

(known in the literature as the “s-t cancellation”). That will finally identify the genuine

propagator-, vertex-, and box-like pieces of the entire product.

Now the important step is the following: Suppose that one starts out with the r.h.s.

of eq. (A.1), i.e., one works at the level of the physical squared amplitude. The PT

rearrangement of the r.h.s. may furnish the PT rearranged amplitudes on the l.h.s., through

an (appropriately subtracted) dispersion relation. Thus, the absorptive PT construction

means to (i) PT-rearrange the r.h.s., (ii) impose the optical theorem (individually for each

ℓ), and (iii) use analyticity to get the real parts of the PT amplitudes.

Let us now see how the PT absorptive construction gets generalized to higher orders,

and, in particular, how it can furnish a unique way for defining the PT construction without

any a-priori reference to the BFM and its special vertices.
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Π̂(1)

Γ
(0)
F

p2

p1

k2

k1

(a) (b) (c)

+
Γ

(0)
F

+ + + + · · ·





Π(1)

Γ
(0)
F

Γ
(0)
F

Π(1)

(d) (e)

+ +⊗









Γ
(0)
F

(f) (g) (h)

Figure 22: The product of the PT-rearranged amplitudes of the process qq̄ → qq̄ at one-loop

(up) and tree-level (down). The longitudinal momenta from the polarization tensors will produce

additional cancellations between s-channel and t-channel graphs [30], furnishing finally the first

term on the r.h.s. of eq. (A.2).

At the next order in g2 eq. (A.1) becomes

ℑm〈qq̄|T [6]|qq̄〉ℓ =
1

2

(
1

2!

)∫

PS2g

2ℜe[〈gg|T [4]|qq̄〉
∗
〈gg|T [2]|qq̄〉]ℓ

+
1

2

(
1

3!

)∫

PS3g

[〈ggg|T [2]|qq̄〉
∗
〈ggg|T [2]|qq̄〉]ℓ , (A.2)

where now
∫
PS3g

denotes the three-body phase-space for massless gluons.

According to eq. (A.2) then the imaginary parts of the two-loop PT Green’s functions

(under construction) are related by the optical theorem to precisely identifiable and very

special parts of the squared amplitudes for the processes qq̄ → gg and qq̄ → ggg. In

particular, the two-particle Cutkosky cuts of the two-loop PT self-energy are related to the

propagator-like part of the PT-rearranged one-loop squared amplitude for qq̄ → gg, while,

at the same time, the three-particle Cutkosky cuts of the same quantity are related to the

propagator-like part of the PT-rearranged tree-level squared amplitude for qq̄ → ggg. The

same holds for vertex- and box-like contributions. The processes appearing on the r.h.s. of

eq. (A.2) are shown in figures 22 and 23. The advantage of this formulation is the following:

all the PT-rearranged (squared) amplitudes appearing on the r.h.s. are at least one loop

lower than the amplitude on the l.h.s.. Therefore, one can actually reconstruct the l.h.s.,

by working directly on the r.h.s., because one knows how to pinch at lower orders.

To see how all this analysis makes finally contact with the main question at hand,

namely which way to pinch in higher orders, let us focus on figure 22. There it is clear

that the product involves the PT-rearranged one-loop on-shell amplitude for the process

q(p1)q̄(p2)→ g(k1)g(k2), whose construction is absolutely fixed and well defined, and has

been described in great detail in the literature [46, 34] In fact, it was the first explicit

example [46] demonstrating the universality (process-independence) of the PT gluon self-
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(a)

Γ
(0)
F

k3, ρ, c

k1, µ, a

k2, ν, b

p1

p2

(b)

Γ
(0)
F

(c)

Γ
(0)
F

(d)

(e) (f) (g) (h)

Figure 23: The PT-rearranged tree-level amplitude for the process qq̄ → ggg; squaring and further

pinching triggered by the longitudinal momenta inside the polarization tensors [30] will furnish the

second term on the r.h.s. of eq. (A.2).

energy: the resulting gluon self-energy does not depend on the embedding process (quarks

to quarks or quarks to gluons or gluons to gluons, etc). The PT-rearranged one-loop

q(p1)q̄(p2) → g(k1)g(k2) is obtained following exactly the same PT procedure as for the

process with only quarks as external particles. In particular, the three-gluon vertices in

graphs (b) and (c) in figure 22 must be exactly as shown, i.e., the one injected with q has

undergone the PT decomposition (and has become ΓF), while the ones injected with k1

and k2 remain unchanged. Let us now return to the two representative two-loop diagrams

of figure 21. After their PT rearrangement, the two-particle Cutkosky cut on (a) denoted

by (c2) in figure 21 must reproduce (c) ⊗ [(f) + (g)] in figure 22, and cut (c4) on (b) must

reproduce (b)⊗ [(f)+(g)]. Obviously, if we were to modify the internal three-gluon vertices

of (a) or (b) in figure 21 in any way, this identification would not work: one must modify only

the vertex injected with q (turning it to ΓF). This argument may be generalized to include

all remaining two-particle and three-particle cuts, making the above conclusion completely

airtight. Under the light of these observations it should be clear why, for example, the

relevant full three-gluon vertex entering into the SD equation for the gluon self-energy (viz.

figure 6) is indeed Γ bAAA (constructed in subsection 4.2 ) and not the vertex Γ bA bA bA. The

latter could not be consistently constructed inside loops, because any preferred direction

(i.e. the direction determining the “would-be” background field) is immediately at odds

with the unitarity-cut arguments developed above.

The arguments presented here do not postulate at any point the existence of any

relation between the PT and the BFM. On the other hand, on hindsight, all conclusions
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drawn (for example, the Γ bAAA versus Γ bA bA bA issue) are in complete agreement with the

known PT/BFM correspondence. Specifically, switching now to the BFM language, the

fact that internal vertices should not be touched is precisely what the unique set of BFM

Feynman rules dictates: since one cannot have background fields propagating inside loops,

all internal vertices have three quantum gluons merging. This is exactly what one finds,

e.g., when computing the two-loop gluon self-energy [17]: as a subset of the calculation

one will have to consider the one-loop vertex Γ
(1)
bAAA

, but will never encounter the one-loop

vertex Γ
(1)
bA bA bA

(constructed in [15] and studied in [29]).

B. A brief discussion of renormalization

This appendix is meant to outline the general framework for dealing with the issue of renor-

malization in the context of the PT. The emphasis is put on the various conceptual and

methodological issues involved, rather than an explicit proof of renormalizability. In par-

ticular, we consider this discussion necessary for convincing the reader that renormalization

poses no problem whatsoever for the self-consistent implementation of the PT.

The analysis presented thus far assumes implicitly that the theory is renormalizable

(as is QCD in d = 4) or superrenormalizable (as is QCD in d = 3), and that all momentum

space integrals have been regularized by resorting to a regularization scheme that preserves

the gauge symmetry (obviously there is little point in applying the PT to a theory that

is ill-defined to begin with). Specifically, throughout the paper we have adopted the most

widely used such scheme, namely dimensional regularization. Given that the original the-

ory is renormalizable (by assumption) it should be clear that there is no step throughout

the PT procedure that could jeopardize renormalizability. Indeed, all that the PT really

does is to trigger STIs. The latter are a direct consequence of the original BRST symmetry

of the theory; therefore, within a suitable regularization scheme (such as dimensional regu-

larization) they will be preserved by renormalization (i.e, they will not get deformed). It is

important to emphasize that the latter property holds true for the BQIs as well; they too

are a consequence of the BRST symmetry and (under the same assumptions) do not get

deformed either. Notice that this is completely different from the case of the Nielsen iden-

tities [48], describing the gauge fixing parameter dependence of the bare Green’s functions

(we do not use them here). In this latter case, one needs to extend the BRST symmetry

to include the variation of the gauge fixing parameter. This, in turn, will spoil the orig-

inal BRST invariance of the theory, implying that the latter identities get deformed by

renormalization already at the one-loop level [43].

For concreteness let us assume that we start the PT procedure in the renormalizable

(linear) Feynman gauge (RFG), as we have done throughout this article. Let us denote by

ZA the gluon wave-function renormalization, by Z3 the vertex renormalization constant for

the three-gluon vertex Γαµν , by Z̄2 the usual ghost wave-function renormalization, and by

Z̄1 the ghost-gluon vertex renormalization constant. Notice also that, the BRST symmetry

demands that Z3/ZA = Z̄1/Z̄2. Then, the fundamental STIs employed when carrying out

the PT survives renormalization, simply because all counterterms necessary to render it

finite are already furnished by the usual counterterms of the RFG Lagrangian. This is, of
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course, a direct result of the basic assumption the the theory in the RFG is renormalizable:

once all counterterms have been supplied in the RFG, the STI which is studied in the same

gauge, will continue being valid.

The actual implementation of the renormalization procedure proceeds along the lines

described in [30] for the two-loop case. One should start out with the counterterms that

are necessary to renormalize individually the conventional Green’s functions in the RFG.

Then, one should show that, by simply rearranging these counterterms following the PT

rules, one can renormalize the PT Green’s functions. Notice also that, due to the validity

of the Abelian WIs, the renormalization constants before and after the PT rearrangements

are related to the gauge coupling renormalization as follows:

Z2
g = Z2

1Z
−2
2 Z−1

A = Ẑ2
1 Ẑ

−2
2 Ẑ−1

A = Ẑ−1
A . (B.1)

After rearranging the original RFG counterterms in such a way as to render the PT

Green’s functions finite, one should be able to verify that the resulting counterterms are in

fact identical to those obtained when carrying out the BFM renormalization program as

explained by Abbott [17], i.e. by renormalizing only the background gluons, the coupling

constant g, and the quantum gauge-fixing parameter ξQ. Thus, the relevant renormalization

constants are given by

g0 = Zgg, Ã0 = Z
1/2
eA
Ã, ξ0Q = ZξQξQ, ZξQ = ZA. (B.2)

The renormalization of ξQ is necessary due to the fact that the longitudinal part of the

quantum gluon propagator is not renormalized. As pointed out by Abbott, in the context

of the BFM this step may be avoided if the calculation is carried out with an arbitrary ξQ
rather than the BFG ξQ = 1. Of course, as we have seen, the PT brings us effectively to

ξQ = 1; thus, when interpreting the resulting counterterm from the BFM point of view,

one should keep in mind that gauge-fixing parameter renormalization is necessary. The

renormalization of ξQ not only affects the propagator-lines, but also the longitudinal parts

of the external vertices; it renormalizes precisely the ΓP part, as can be seen from the

corresponding BFM Feynman rule for the three-gluon vertex (see appendix F).

All the above ingredients must be combined appropriately in order to demonstrate the

renormalizability of the new SDE; we shall not pursue this point any further.

C. Faddeev-Popov Equations

As a first example of the use of the FPE introduced in section 3.4, let us differentiate the

functional equation (3.37) with respect to the ghost field cb; after setting the fields/anti-

fields to zero we get (relabeling the color and Lorentz indices)

Γcmc̄n(q) + iqνΓcmA∗n
ν

(q) = 0, (C.1)

which can be used to relate the auxiliary function ΓcmA∗n
ν

(q) with the full

ghost propagator Dab(q). Due to Lorentz invariance, we can in fact write

ΓcmA∗n
ν

(q) = qνΓcmA∗n(q), and therefore

Γcmc̄n(q) = −iqνΓcmA∗n
ν

(q) = −iq2ΓcmA∗n(q). (C.2)
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On the other hand, due to our definition of the Green’s functions [see eq. (3.18)], one

has that

iDmr(q)Γcr c̄n(q) = δmn, (C.3)

and therefore we get the announced relation:

ΓcmA∗n
ν

(q) = qνΓcmA∗n(q)

= qν [q
2Dmn(q)]−1. (C.4)

As a second example, let us differentiate eq. (3.37) twice, once with respect to Anν
and once with respect to cr, and then set the fields/anti-fields to zero; in this way we get

the identity

ΓcrAn
ν c̄

m(k, q) + iqµΓcrAn
νA

∗m
µ

(k, q) = 0, (C.5)

which is particularly useful for the PT construction. Notice that this identity is the

equivalent of the one introduced in section 2.1 relating the conventional H function with

the trilinear gluon-ghost vertex. All these identities can be easily checked at tree-level; for

example, using the Feynman rules presented in appendix F, we have

iqµΓ
(0)
crAn

νA
∗m
µ

(k, q) = igfmnrqν = −Γ
(0)
crAn

ν c̄
m(k, q). (C.6)

Differentiation of the functional (3.39) with respect to a BFM source Ω and a quantum

gluon field A or a ghost field c and a background gluon Â, provides instead the identities

(k1 + k + q = 0)

ΓΩr
ρA

n
ν c̄

m(k, q) + iqµΓΩr
ρA

n
νA

∗m
µ

(k, q) = gfmnrgνρ, (C.7)

Γcr bAn
ν c̄

m(k, q) + iqµΓcr bAn
νA

∗m
µ

(k, q) = −igfmneΓcrA∗e
ν

(−k1), (C.8)

that can be easily checked at tree-level.

D. Slavnov-Taylor Identities

STIs are obtained by functional differentiation of the STI functional of eq. (3.30) with

respect to suitable combinations of fields chosen following the rules discussed in section 3.3.

D.1 STIs for quark proper vertices

We begin by deriving the STI satisfied by the trilinear quark-gluon vertex (see, e.g., [4, 33]).

From our general discussion of section 3.3, for obtaining this identity we need to consider

the functional differentiation

δ3S(Γ)

δca(q)δψ(p2)δψ̄(−p1)

∣∣∣∣
Φ,Φ∗=0

= 0 q + p2 = p1, (D.1)

from which we obtain the equation

ΓcaA∗γ
d

(−q)ΓAd
γψψ̄

(p2,−p1) + Γψ∗ψ̄cm(−p1, q)Γψψ̄(p2) + Γψψ̄(p1)Γψcmψ̄∗(q,−p1) = 0, (D.2)
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where the two-point function Γψψ̄(p) is defined through the identity

iS(p)Γψψ̄(p) = I. (D.3)

Using then the relation of eq. (C.4), we get the STI in its final form, namely

qαΓAa
αψψ̄

(p2,−p1) = [q2Daa′(q)]
{

Γψ∗ψ̄ca′ (−p1, q)Γψψ̄(p2) + Γψψ̄(p1)Γψca′ ψ̄∗(q,−p1)
}
.

(D.4)

The three-point auxiliary functions appearing in the equation above can be constructed

using the Feynman rules reported in appendix F. At tree-level the above identity can be

trivially checked, with the r.h.s. being proportional to two inverse quark propagators

qαΓ
(0)

Aa
αψψ̄

(p2,−p1) = [q2Daa′(q)](0)
{
Γ

(0)

ψ∗ψ̄ca′
(−p1, q)Γ

(0)

ψψ̄
(p2) + Γ

(0)

ψψ̄
(p1)Γ

(0)

ψca′ ψ̄∗
(q,−p1)

}

= gta
[
(/p1

−m) − (/p2
−m)

]
. (D.5)

Contrary to the case of QED, where this generalizes directly to all orders, in the QCD case

it is valid only to lowest order, due to the non-linearity of eq. (D.4).

The STI satisfied by the quadrilinear quark-gluon vertex (induced beyond tree-level)

can be derived by considering the following functional differentiation

δ4S(Γ)

δcm(k1)δAnν (k2)δψ(p2)δψ̄(−p1)

∣∣∣∣
Φ,Φ∗=0

= 0 k1 + k2 + p2 = p1. (D.6)

Carrying out the functional differentiation and using again eq. (C.4), we get

kµ1 ΓAm
µ A

n
νψψ̄

(k2, p2,−p1) = [k2
1D

mm′

(k1)]

{
Γψ∗ψ̄cm′ (−p1, k1)ΓAn

νψψ̄
(p2,−p2 − k2)

+ΓAn
νψψ̄

(p1 − k2,−p1)Γψcm′ ψ̄∗(k1,−p2 − k1) + Γcm′An
νA

∗γ
d

(k2,−k1 − k2)ΓAd
γψψ̄

(p2,−p1)

+ΓAn
νψ

∗ψ̄cm′ (p2,−p1, k1)Γψψ̄(p2) + Γψψ̄(p1)ΓAn
νψc

m′ ψ̄∗(p2, k1, p1)

+Γcm′A∗γ
d
ψψ̄(k2, p2,−p1)ΓAd

γA
n
ν
(k2)

}
. (D.7)

Clearly this identity starts at the one-loop level (recall that Γs represent 1PI functions).

D.2 STIs for gluon proper vertices

Let us start by deriving the well-known STI for the trilinear gluon vertex [4, 33, 31]. By

considering the functional differentiation

δ3S(Γ)

δca(q)δAmµ (k1)δAnν (k2)

∣∣∣∣
Φ,Φ∗=0

= 0 q + k1 + k2 = 0, (D.8)

and using eq. (C.4) one obtains

qαΓAa
αA

m
µ A

n
ν
(k1, k2) = [q2Daa′(q)]

{
Γca′An

νA
∗γ
d

(k2, k1)ΓAd
γA

m
µ

(k1)

+Γca′Am
µ A

∗γ
d

(k1, k2)ΓAd
γA

n
ν
(k2)

}
. (D.9)

– 55 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
3

Notice that since we are working with the minimal action (see subsection 3.3), one has

Γ
(0)

Aa
αA

b
β

(q) = iq2δabPαβ(q), (D.10)

and therefore

ΓAa
αA

b
β
(q) = (∆−1)abαβ(q) − iδabqαqβ

= iδabPαβ(q)∆
−1(q2). (D.11)

As an overall consistency check of our definitions and conventions, notice that eqs. (2.7)

and (D.11) imply that −ΓAa
αA

b
β
(q) = δabΠαβ(q), in full agreement with eq. (3.18). Using

the above relation, we can now check the identity at tree-level; we get

qαΓ
(0)
Aa

αA
m
µ A

n
ν
(k1, k2) = [q2Daa′(q)](0)

{
Γ

(0)

ca′An
νA

∗γ
d

(k2, k1)Γ
(0)

Ad
γA

m
µ

(k1)

+ Γ
(0)

ca′Am
µ A

∗γ
d

(k1, k2)Γ
(0)

Ad
γA

n
ν
(k2)

}

= igfamn
[
(gµνk

2
1 − k1µk1ν) − (gµνk

2
2 − k2µk2ν)

]
. (D.12)

Notice also that eq. (D.11) allows us to compare the STI of eq. (D.9) with that of eq. (2.10),

which is written in the conventional formalism; in this way we get the identity (factoring

out the color structure)

Hµγ(k1, k2) = ΓcAµA∗

γ
(k1, k2). (D.13)

We pause here to show what would have happened had we worked with the complete

generating functional. In this case, due to the extra term appearing in the master equa-

tion (3.27) satisfied by the complete action, the differentiation carried out in eq. (D.8) would

generate two more terms with respect to the ones already appearing in eq. (D.9), namely

δdnk2νΓcaAm
µ c̄

d(k1, k2) + δdmk2µΓcaAn
ν c̄

d(k2, k1). (D.14)

To get to the terms above we have used the equation of motion of the Nakanishi-Lautrup

multiplier B eliminating the latter in favor of the corresponding gauge-fixing function F .

Then, making use of the FPE (C.5), we get

−iδdnk2νk2γΓcaAm
µ A

∗γ
d

(k1, k2) − iδdmk1µk1γΓcaAn
νA

∗γ
d

(k2, k1), (D.15)

so that we finally would get the STI

qαΓAa
αA

m
µ A

n
ν
(k1, k2) = [q2Daa′(q)]

{
Γca′An

νA
∗γ
d

(k2, k1)
[
ΓC
Ad

γA
m
µ

(k1) − iδdmk1µk1γ

]

+Γca′Am
µ A

∗γ
d

(k1, k2)
[
ΓC
Ad

γA
n
ν
(k2)−iδ

dnk2γk2ν

]}
, (D.16)

where we have indicated explicitly that the two-point functions are to be evaluated from

the completed functional (for the three point functions appearing in the STI above there is

no difference). We then see that the difference amounts to a tree-level piece appearing in

the two-point function, as has been anticipated in our general discussion of subsection 3.3

– 56 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
3

(recall that we are using the Feynman gauge ξ = 1). In particular notice that we correctly

find the relation ΓC
Aa

αA
b
β

(q) = (∆−1)abαβ(q).

Another STI that will be needed in the PT construction is the one involving the

quadrilinear gluon vertex; carrying out the functional differentiation

δ4S(Γ)

δcm(k1)δAnν (k2)δArρ(p2)δAsσ(−p1)

∣∣∣∣
Φ,Φ∗=0

= 0 k1 + k2 + p2 = p1, (D.17)

and using eq. (C.4), we arrive at the result

kµ1 ΓAm
µ A

n
νA

r
ρA

s
σ
(k2, p2,−p1) = [k2

1D
mm′

(k1)]

{
Γcm′As

σA
∗γ
d

(−p1, k2 + p2)ΓAd
γA

n
νA

r
ρ
(k2, p2)

+Γcm′Ar
ρA

∗γ
d

(p2, k2 − p1)ΓAd
γA

n
νA

s
σ
(k2,−p1) + Γcm′An

νA
∗γ
d

(k2, p2 − p1)ΓAd
γA

r
ρA

s
σ
(p2,−p1)

+Γcm′Ar
ρA

s
σA

∗γ
d

(p2,−p1, k2)ΓAd
γA

n
ν
(k2) + Γcm′An

νA
s
σA

∗γ
d

(k2,−p1, p2)ΓAd
γA

r
ρ
(p2)

+Γcm′An
νA

r
ρA

∗γ
d

(k2, p2,−p1)ΓAd
γA

s
σ
(p1)

}
. (D.18)

At tree-level, notice that only the first two lines of this identity are different from zero;

then, using the Jacobi identity, we obtain

kµ1 Γ
(0)
Am

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1)= [k2

1D
mm′

(k1)]
(0)

{
Γ

(0)

cm′As
σA

∗γ
d

(−p1, k2 + p2)Γ
(0)

Ad
γA

n
νA

r
ρ
(k2, p2)

+Γ
(0)

cm′Ar
ρA

∗γ
d

(p2, k2 − p1)Γ
(0)

Ad
γA

n
νA

s
σ
(k2,−p1)

+Γ
(0)

cm′An
νA

∗γ
d

(k2, p2 − p1)Γ
(0)

Ad
γA

r
ρA

s
σ
(p2,−p1)

}

= −ig2

{
fmsef ern (gνσk1ρ − gρσk1ν)+f

mref esn (gνρk1σ − gρσk1ν)

+fmnef esr (gνρk1σ − gνσk1ρ)

}
. (D.19)

D.3 STIs for mixed quantum/background Green’s functions

Let us consider a Green’s function involving background as well as quantum fields. Clearly,

when contracting such a function with the momentum corresponding to a background

leg it will satisfy a linear WI [see, e.g., eqs. (2.37)–(2.40)], whereas when contracting

it with the momentum corresponding to a quantum leg it will satisfy a non-linear STI.

Let us then study the particularly interesting case of the STI satisfied by the vertex

Γ bAAA when contracted with the momentum of one of the quantum fields. Taking the

functional differentiation

δ3S ′(Γ′)

δcm(k1)δÂaα(q)δAnν (k2)

∣∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + k1 + k2 = 0, (D.20)

we get

kµ1 Γ bAa
αA

m
µ A

n
ν
(k1, k2) = [k2

1D
mm′

(k1)]
{

Γcm′An
νA

∗ǫ
e

(k2, q)Γ bAa
αA

e
ǫ
(q)

+Γcm′ bAa
αA

∗ǫ
e

(q, k2)ΓAe
ǫA

n
ν
(k2)

}
. (D.21)
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Notice that the same result can be achieved by contracting directly the BQI of eq. (E.24)

with the momentum of one of the quantum fields and then using the STI of eq. (D.9)

together with the BQIs of eqs. (E.2) and (E.26) to bring the result in the above form.

It is particularly important to correctly identify in the above identity the missing tree-

level contributions (due to the use of the reduced functional, see also the discussion in

section E.2). In order to do that, one can either work with the complete functional and use

the FPE (C.8), or add them by hand using eq. (E.24), obtaining in either cases the STI

kµ1 Γ bAa
αA

m
µ A

n
ν
(k1, k2) = [k2

1D
mm′

(k1)]
{
Γcm′An

νA
∗ǫ
e

(k2, q)Γ bAa
αA

e
ǫ
(q)+Γcm′ bAa

αA
∗ǫ
e

(q, k2)ΓAe
ǫA

n
ν
(k2)
}

−igfamn(k2
1gαν − k1αk2ν). (D.22)

This STI can be further manipulate by using eq. (D.11) and the FPE (C.8) for rewriting

the term proportional to ΓAA(k2) as

Γ
cm′ bAa

αA
∗ǫ
e

(q, k2)ΓAe
ǫA

n
ν
(k2) = Γ

cm′ bAa
αA

∗ǫ
e

(q, k2)(∆
−1)enǫν (k2) + k2νΓcm′ bAa

αc̄
n(q, k2)

+igfaenk2νΓcm′A∗e
α

(−k1). (D.23)

On the other hand, employing eq. (C.4) we find

[k2
1D

mm′

(k1)](igf
naek2ν)Γcm′A∗e

α
(−k1) = −igfamnk1αk2ν ; (D.24)

so, inserting eq. (D.23) back into eq. (D.22) we see that the term above partially cancels

the tree level contribution, thus leaving us with the STI

kµ1 Γ bAa
αA

m
µ A

s
ν
(k1, k2)=[k2

1D
mm′

(k1)]
{
Γcm′An

νA
∗ǫ
e

(k2, q)Γ bAa
αA

e
ǫ
(q)+Γcm′ bAa

αA
∗ǫ
e

(q, k2)(∆
−1)enǫν (k2)

+ k2νΓcm′ bAa
αc̄

n(q, k2)
}
− igfamnk2

1gαν . (D.25)

D.4 STIs for the quark SD kernel

In addition to the STIs for 1PI (proper) vertices, the PT construction for SDEs requires

the additional knowledge of the result of the action of longitudinal momenta on connected

kernels. The first one of these kernels is encountered in the construction of the PT gluon-

quark-quark vertex, and can be written as follows (see figure 11)

KAm
µ A

n
νψψ̄

(k2, p2,−p1) = ΓAm
µ A

n
νψψ̄

(k2, p2,−p1)

+iΓAm
µ ψψ̄

(ℓ,−p1)iS(ℓ)iΓAn
νψψ̄

(p2,−ℓ)

+iΓAn
νψψ̄

(ℓ′,−p1)iS(ℓ′)iΓAm
µ ψψ̄

(p2,−ℓ
′). (D.26)

where ℓ = k2 + p2 = p1 − k1 and ℓ′ = k1 + p2 = p1 − k2. Then, using the STI of eq. (D.4)

and the relation (D.3), one gets the results

kµ1 iΓAm
µ ψψ̄

(ℓ,−p1)iS(ℓ)iΓAn
νψψ̄

(p2,−ℓ) = −[k2
1D

mm′

(k1)]
{

Γψ∗ψ̄cm′ (−p1, k1)

+iΓψψ̄(p1)Γψcm′ ψ̄∗(k1,−p1)S(ℓ)
}

ΓAn
νψψ̄

(p2,−ℓ),

(D.27)
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kµ1 iΓAn
νψψ̄

(ℓ′,−p1)iS(ℓ′)iΓAm
µ ψψ̄

(p2,−ℓ
′) = −ΓAn

νψψ̄
(ℓ′,−p1)[k

2
1D

mm′

(k1)]
{
Γψcm′ ψ̄∗(k1,−ℓ

′)

+ iS(ℓ′)Γψ∗ψ̄cm′ (−ℓ′, k1)Γψψ̄(p2)
}
. (D.28)

We then see that the first term in eqs. (D.27) and (D.28) will cancel the first two terms of

the STI of the 1PI vertex of eq. (D.7), and we finally arrive at the STI

kµ1KAm
µ A

n
νψψ̄

(k2, p2,−p1)=[k2
1D

mm′

(k1)]
{

Γcm′An
νA

∗γ
d

(k2,−k1 − k2)ΓAd
γψψ̄

(p2,−p1)

+Γψψ̄(p1)KAn
νψc

m′ ψ̄∗(p2, k1,−p1)+KAn
νψ

∗ψ̄cm′ (p2,−p1, k1)Γψψ̄(p2)

+ Γcm′A∗γ
d
ψψ̄(k2, p2,−p1)ΓAd

γA
n
ν
(k2)

}
, (D.29)

where we have defined the auxiliary kernels

KAn
νψc

m′ ψ̄∗(p2, k1,−p1) = ΓAn
νψc

m′ ψ̄∗(p2, k1,−p1)

+iΓψcm′ ψ̄∗(k1,−p1)iS(ℓ)iΓAn
νψψ̄

(p2,−ℓ), (D.30)

KAn
νψ

∗ψ̄cm′ (p2,−p1, k1) = ΓAn
νψ

∗ψ̄cm′ (p2,−p1, k1)

+iΓAn
νψψ̄

(ℓ,−p1)iS(ℓ)iΓψ∗ψ̄cm′ (−ℓ, k1). (D.31)

D.5 STIs for the gluon SD kernel

In the construction of the SDEs for the gluon self-energy and three-gluon vertex, one needs

the knowledge of the STI satisfied by the kernel (see figure 15)

KAm
µ A

n
νA

r
ρA

s
σ
(k2, p2,−p1) = ΓAm

µ A
n
νA

r
ρA

s
σ
(k2, p2,−p1)

+iΓAs
σA

m
µ A

e
ǫ
(k1, ℓ)i∆

ǫǫ′

ee′(ℓ)iΓAe′

ǫ′
An

νA
r
ρ
(k2, p2)

+iΓAs
σA

n
νA

e
ǫ
(k2, ℓ

′)i∆ǫǫ′

ee′(ℓ
′)iΓ

Ae′

ǫ′
Am

µ A
r
ρ
(k1, p2). (D.32)

Using the above relation, together with STI of eq. (D.9), we find the following result

kµ1 iΓAs
σA

m
µ A

e
ǫ
(k1, ℓ)i∆

ǫǫ′

ee′(ℓ)iΓAe′

ǫ′
An

νA
r
ρ
(k2, p2) = −[k2

1D
mm′

(k1)] ×

×

{
Γcm′As

σA
∗e′
ǫ

(−p1, ℓ)P
ǫǫ′(ℓ)+iΓcm′Ae

ǫA
∗γ
d

(ℓ,−p1)ΓAd
γA

s
σ
(p1)∆

ǫǫ′

ee′(ℓ)

}
Γ
Ae′

ǫ′
An

νA
r
ρ
(k2, p2).

(D.33)

In this case this is, however, not the end of the story, since the first term in the equation

above still contains (virtual) longitudinal momenta, which will trigger the STI of eq. (D.9)

together with the FPE (C.5). After taking this into account, we obtain

kµ1 iΓAs
σA

m
µ A

e
ǫ
(k1, ℓ)i∆

ǫǫ′

ee′(ℓ)iΓAe′

ǫ′
An

νA
r
ρ
(k2, p2) = −[k2

1D
mm′

(k1)] × (D.34)

×

{[
Γcm′As

σA
∗ǫ′

e′
(−p1, ℓ) + iΓcm′Ae

ǫA
∗γ
d

(ℓ,−p1)ΓAd
γA

s
σ
(p1)∆

ǫǫ′

ee′(ℓ)
]
ΓAe′

ǫ′
An

νA
r
ρ
(k2, p2)

+iΓcm′As
σ c̄

e(−p1, ℓ)D
ee′(ℓ)

[
Γce′Ar

ρA
∗γ
d

(p2, k2)ΓAd
γA

n
ν
(k2)+Γce′An

νA
∗γ
d

(k2, p2)ΓAd
γA

r
ρ
(p2)
]}
.
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Similarly we find

kµ1 iΓAs
σA

n
νA

e
ǫ
(k2, ℓ

′)i∆ǫǫ′

ee′(ℓ
′)iΓAe′

ǫ′
Am

µ A
r
ρ
(k1, p2) = −[k2

1D
mm′

(k1)] ×

×

{
ΓAs

σA
n
νA

e
ǫ
(k2, ℓ

′)
[
Γcm′Ar

ρA
∗ǫ
e

(p2,−ℓ
′) + i∆ǫǫ′

ee′(ℓ
′)Γ

cm′Ae′

ǫ′
A∗γ

d

(−ℓ′, p2)ΓAd
γA

r
ρ
(p2)

]

+iDee′(ℓ′)
[
ΓceAn

νA
∗γ
d

(k2,−p1)ΓAd
γA

s
σ
(p1) + ΓceAs

σA
∗γ
d

(−p1, k2)ΓAd
γA

n
ν
(k2)

]
×

×Γcm′Ar
ρc̄

e′ (p2,−ℓ
′)

}
. (D.35)

As before, after combining these results with the four-gluon 1PI vertex STI of eq. (D.18)

we arrive at the needed STI for the four-gluon SD kernel, namely

kµ1KAm
µ A

n
νA

r
ρA

s
σ
(k2, p2,−p1) = [k2

1D
mm′

(k1)]

{
Γcm′An

νA
∗γ
d

(k2,−k1 − k2)ΓAd
γA

r
ρA

s
σ
(p2,−p1)

+Kcm′An
νA

s
σA

∗γ
d

(k2,−p1, p2)ΓAd
γA

r
ρ
(p2)

+Kcm′An
νA

r
ρA

∗γ
d

(k2, p2,−p1)ΓAd
γA

s
σ
(p1)

+Kcm′Ar
ρA

s
σA

∗γ
d

(p2,−p1, k2)ΓAd
γA

n
ν
(k2)

}
,(D.36)

where the following auxiliary kernels have been defined

Kcm′An
νA

s
σA

∗γ
d

(k2,−p1, p2) = Γcm′An
νA

s
σA

∗γ
d

(k2,−p1, p2)

+iΓAs
σA

n
νA

e
ǫ
(k2, ℓ

′)i∆ǫǫ′

ee′(ℓ
′)iΓcm′Ae′

ǫ′
A∗γ

d
(−ℓ′, p2)

+iΓcm′As
σ c̄

e(−p1, ℓ)iD
ee′(ℓ)iΓce′An

νA
∗γ
d

(k2, p2), (D.37)

Kcm′An
νA

r
ρA

∗γ
d

(k2, p2,−p1) = Γcm′An
νA

r
ρA

∗γ
d

(k2, p2,−p1)

+iΓcm′Ae
ǫA

∗γ
d

(ℓ,−p1)i∆
ǫǫ′

ee′(ℓ)iΓAe′

ǫ′
Ar

ρA
n
ν
(k2, p2)

+iΓceAn
νA

∗γ
d

(k2,−p1)iD
ee′(ℓ′)iΓcm′Ar

ρc̄
e′ (p2,−ℓ

′), (D.38)

Kcm′Ar
ρA

s
σA

∗γ
d

(p2,−p1, k2) = Γcm′Ar
ρA

s
σA

∗γ
d

(p2,−p1, k2)

+iΓcm′As
σ c̄

e′ (−p1, ℓ)iD
ee′(ℓ)iΓce′Ar

ρA
∗γ
d

(p2, k2)

+iΓceAs
σA

∗γ
d

(−p1, k2)iD
ee′(ℓ′)iΓcm′Ar

ρc̄
e′ (p2,−ℓ

′). (D.39)

E. Background-Quantum Identities

BQIs are obtained by functional differentiation of the STI functional of eq. (3.32) with

respect to combinations of background fields, quantum fields and background sources.

E.1 BQIs for two-point functions

The first BQI we can construct is the one relating the conventional with the BFM gluon

self-energies. To this end, consider the following functional differentiation

δ2S ′ (Γ′)

δΩa
α(p)δAbβ(q)

∣∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + p = 0,
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= −δdmqγ +

Ωa
α A

∗γ
d

= = −igfadngαγ +
A

∗γ
d

a
α

ca

Anν

A
∗γ
d

= igfadngγν +

ca

Anν

c̄n

Adγ

c̄n

Adγ

cm

−Γ′

cmA
∗γ

d

              

γ

d

A
∗γ
d

γ
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α

Ωa
α

cm

q

p
A

∗γ
d

a
α
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q

k
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γ

d

Ωa
α

q
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Figure 24: Expansions of the gluon anti-field and BFM source in terms of the corresponding

composite operators. Notice that if the anti-field or the BFM sources are attached to a 1PI vertex,

as shown in the first line, such an expansion will in general convert the 1PI vertex into a (connected)

SD kernel. The equivalence shown is therefore not valid at tree-level (e.g., in the case of three-point

functions such an equivalence would imply that the kernels shown on the r.h.s. of the corresponding

expansions would be disconnected); when present, the tree-level needs to be added by hand, as

explicitly shown in the two expansions of the second line and the last one of the third line. This

type of expansion allows one to express the terms appearing in the BQIs in a form that reveals

kernels appearing in the STIs [see, e.g., eqs. (E.14), (E.15), (E.18) and (E.19)]

δ2S ′ (Γ′)

δΩa
α(p)δÂbβ(q)

∣∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + p = 0, (E.1)

which will give the relations

iΓ bAa
αA

b
β
(q) =

[
igγαδ

ad + ΓΩa
αA

∗γ
d

(q)
]
ΓAd

γA
b
β
(q), (E.2)

iΓ bAa
α

bAb
β
(q) =

[
igγαδ

ad + ΓΩa
αA

∗γ
d

(q)
]
ΓAd

γ
bAb

β
(q). (E.3)

We can now combine eqs. (E.2) and (E.3) such that the two-point function mixing

background and quantum fields drops out, to get the BQI

iΓ bAa
α

bAb
β
(q) = iΓAa

αA
b
β
(q) + ΓΩa

αA
∗γ
d

(q)ΓAd
γA

b
β
(q) + ΓΩb

β
A∗γ

d
(q)ΓAa

αA
d
γ
(q)

−iΓΩa
αA

∗γ
d

(q)ΓAd
γA

e
ǫ
(q)ΓΩb

β
A∗ǫ

e
(q)

= iΓAa
αA

b
β
(q) + 2ΓΩa

αA
∗γ
d

(q)ΓAd
γA

b
β
(q) − iΓΩa

αA
∗γ
d

(q)ΓAd
γA

e
ǫ
(q)ΓΩb

β
A∗ǫ

e
(q), (E.4)

where the last identity is due to the transversality of the ΓAA two-point function.

In order for our PT procedure to be self-contained, it is important to express the 1PI

auxiliary Green’s function involved in the various STIs and the BQIs in terms of kernels

that also appear in the relevant STIs. The key observation that makes this possible is

that one may always replace an anti-field or BFM source with its corresponding BRST
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c̄eca

An
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An
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=
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σ

+ +

An
ν As

σ

ca c̄e

ca c̄e

Figure 25: Skeleton expansion of the kernel appearing in the SDE for the auxiliary function ΓcAA∗ .

composite operator. Thus, for example, one has (see figure 24)

A∗γ
d (q) → iΓ

(0)

ce′An′

ν′
A∗γ

d

∫

k1

i∆ν′ν
n′n(k2)iD

e′e(k1), (E.5)

Ωa
α(q) → iΓ

(0)

Ωa
αA

n′

ν′
c̄e′

∫

k1

i∆ν′ν
n′n(k2)iD

e′e(k1), (E.6)

where k1 and k2 are related through k2 = q − k1. In this way we get the following SDEs

(see again figure 24)

−ΓcmA∗γ
d

(q) = −δdmqγ − Γ′
cmA∗γ

d
(q)

= −δdmqγ + gfdn
′e′gγν′

∫

k1

De′e(k1)∆
nn′

ν′ν (k2)ΓcmAn
ν c̄

e(k2, k1), (E.7)

iΓcaAn
νA

∗γ
d

(k, q) = igfadngγν − igf e
′ds′gγσ′

∫

k1

Dee′(k1)∆
σσ′

ss′ (k2)KcaAn
νA

s
σ c̄

e(k, k2, k1), (E.8)

−ΓΩa
αA

∗γ
d

(q) = gfae
′n′

gαν′

∫

k1

De′e(k1)∆
ν′ν
n′n(k2)ΓceAn

νA
∗γ
d

(k2,−q), (E.9)

iΓΩa
αA

d
γ c̄

n(k, p) = −igfadngαγ − igfae
′n′

gαν′

∫

k1

De′e(k1)∆
ν′ν
n′n(k2)KceAn

νA
d
γ c̄

n(k2, k, p).

(E.10)

The kernel KcAAc̄ appearing in the SDEs (E.8) and (E.10) is shown in figure 25 and reads

KcaAn
νA

s
σ c̄

e(k, k2, k1) = ΓcaAn
νA

s
σ c̄

e(k, k2, k1)

+iΓAn
νA

s
σA

r
ρ
(k2,−k − k2)i∆

ρρ′

rr′ (k + k2)iΓcmAr′

ρ′
c̄e

(k + k2, k1)

+iΓcaAs
σ c̄

r(k2,−k1 − k2)iD
rr′(k1 + k2)iΓcr′An

ν c̄
e(k, k1). (E.11)

Finally notice that the auxiliary function ΓΩαA∗

β
corresponds precisely to the auxiliary

function Λαβ introduced in eq. (2.33), and therefore its part proportional to gαβ corresponds

to the scalar function G(q2).

E.2 BQIs for three-point functions

The relation between the trilinear quantum gluon-quark vertex and the trilinear

background gluon-quark vertex, can be obtained by considering the following func-

tional differentiation

δ3S ′(Γ′)

δΩa
α(q)δψ(p2)δψ̄(−p1)

∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + p2 = p1. (E.12)
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nm
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i∆mn
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ij (k)

−iδ
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k2

[
gµν − (1 − ξ)kµkν

k2

]

iδ
mn

k2

i δijδff
′

kµγµ−mf

gfamn [gµν(k1 − k2)α + gαν(k2 − q)µ

+gαµ(q − k1)ν ]
iΓAa

αA
m
µ A

n
ν
(k1, k2)

iΓcnAa
αc̄

m(q,−k1)

iΓψjAa
αψ̄
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igγα(ta)ij

−ig2 [fmsef ern(gµρgνσ − gµνgρσ)

+fmnef esr(gµσgνρ − gµρgνσ)

+fmref esn(gµσgνρ − gµνgρσ)]
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µ A

n
νA
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ρA

s
σ
(k2, k3, k4)

Figure 26: Feynman rules for QCD in the Rξ gauges. The first two columns show the lowest

order Feynman diagrams and rule respectively, while the last one shows the corresponding all-order

Green’s function according to the conventions of eq. (3.18).

We then get

iΓ bAa
αψψ̄

(p2,−p1) = [igγαδ
ad + ΓΩa

αA
∗γ
d

(−q)]ΓAd
γψψ̄

(p2,−p1)

+Γψ∗ψ̄Ωa
α
(−p1, q)Γψψ̄(p2) + Γψψ̄(p1)ΓψΩa

αψ̄
∗(q,−p1). (E.13)

In order to explore further the all-order structure of these two auxiliary Green’s func-

tions, replace the BFM source with the corresponding composite operator using eq. (E.6),

thus obtaining

iΓψΩa
αψ̄

∗(q,−p1) = iΓ
(0)

Ωa
αA

n′

ν′
c̄m′

∫

k1

iDm′m(k1)i∆
ν′ν
n′n(k2)KAn

νψc
mψ̄∗(p2, k1,−p1), (E.14)

iΓψ∗ψ̄Ωa
α
(−p1, q) = iΓ

(0)

Ωa
αA

n′

ν′
c̄m′

∫

k1

iDm′m(k1)i∆
ν′ν
n′n(k2)KAn

νψ
∗ψ̄cm(p2,−p1, k1). (E.15)
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Figure 27: Feynman rules for QCD in the BFM gauge. We only include those rules which

are different from the Rξ ones to lowest order. As usual, gray circle on a gluon line indicates a

background field.

where the kernels KAn
νψc

mψ̄∗ and KAn
νψ

∗ψ̄cm have been defined in eq. (D.30) and (D.31). As

it is clear from the two equations above, while the (auxiliary) functions appearing in the

STIs and BQIs ought to be 1PI (l.h.s. of the equations), that is not true for the kernels

appearing after using the substitutions of eq. (E.5) or (E.6), which, in fact, consist of both

1PI and 1PR diagrams (r.h.s. of the equations).

For the BQI involving the three-gluon vertex a similar result can be obtained; choosing

δ3S ′(Γ′)

δΩa
α(q)δArρ(p2)δAsσ(−p1)

∣∣∣∣
Φ,Φ∗,Ω=0

= 0 q + p2 = p1, (E.16)

we will get

iΓ bAa
αA

r
ρA

s
σ
(p2,−p1) = [igγαδ

ad + ΓΩa
αA

∗γ
d

(−q)]ΓAd
γA

r
ρA

s
σ
(p2,−p1)

+ΓΩa
αA

s
σA

∗γ
d

(−p1, p2)ΓAd
γA

r
ρ
(p2) + ΓΩa

αA
r
ρA

∗γ
d

(p2,−p1)ΓAd
γA

s
σ
(p1).

(E.17)
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Figure 28: Feynman rules for QCD anti-fields.
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n
ν c̄

a(k2,−k1)

Figure 29: Feynman rule for the BFM gluon source Ωmµ .

Again we can write

iΓΩa
αA

s
σA

∗γ
d

(−p1, p2) = iΓ
(0)

Ωa
αA

n′

ν′
c̄m′

∫

k1

iDm′m(k1)i∆
ν′ν
n′n(k2)KcmAn

νA
s
σA

∗γ
d

(k2,−p1, p2), (E.18)

iΓΩa
αA

r
ρA

∗γ
d

(p2,−p1) = iΓ
(0)

Ωa
αA

n′

ν′
c̄m′

∫

k1

iDm′m(k1)i∆
ν′ν
n′n(k2)KcmAn

νA
r
ρA

∗γ
d

(k2, p2,−p1), (E.19)
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where the kernels appearing in the above equations have been defined in eqs. (D.37)

and (D.38). Notice the emergence of the pattern exploited in the application of the PT

to the SDEs of QCD: namely that the auxiliary functions appearing in the BQI satisfied

by a particular Green’s function can be written in terms of kernels appearing in the STIs

triggered when the PT procedure is applied to that same Green’s function. The BQI of

eq. (E.17) gives at tree-level the result

Γ bAa
αA

r
ρA

s
σ
(p2,−p1) = ΓAa

αA
r
ρA

s
σ
(p2,−p1). (E.20)

This is once again due to the use of the reduced functional: in fact in such case the two (tree-

level) vertices need to coincide, since the difference between them is proportional to the in-

verse of the gauge fixing parameter (see appendix F) and therefore entirely due to the gauge

fixing Lagrangian. To restore the correct tree-level terms one would have to use the com-

plete functional; in that case the differentiation of eq. (E.16) shows the two additional terms

−δdsp1σΓΩa
αA

r
ρc̄

d(p2,−p1) + δdrp2ρΓΩa
αA

s
σ c̄

d(−p1, p2), (E.21)

which, with the help of eq. (C.7) become

−iδdsp1σp1γΓΩa
αA

r
ρA

∗γ
d

(p2,−p1) − iδdrp2ρp2γΓΩa
αA

s
σA

∗γ
d

(−p1, p2) + gfars(qαρp1σ + gασp2ρ).

(E.22)

Therefore we get the final identity

iΓC
bAa

αA
r
ρA

s
σ

(p2,−p1) = [igγαδ
ad + ΓΩa

αA
∗γ
d

(−q)]ΓAd
γA

r
ρA

s
σ
(p2,−p1) + gfars(qαρp1σ + gασp2ρ)

+ΓΩa
αA

s
σA

∗γ
d

(−p1, p2)
[
ΓC
Ad

γA
r
ρ
(p2) − iδdrp2ρp2γ

]

+ΓΩa
αA

r
ρA

∗γ
d

(p2,−p1)
[
ΓC
Ad

γA
s
σ
(p1) − iδdsp1σp1γ

]
, (E.23)

which gives the expected tree-level result. Once again we see that the difference between

working with the reduced and complete functional lies in some constant (tree-level) terms

that one recovers after applying the FPE for writing the STI/BQI at hand in the same form

using Γ or ΓC. Thus, opting for the fast way of deriving the STI/BQI with the reduced

functional and adding the correct tree-level term, we write the BQI in its final form

iΓ bAa
αA

r
ρA

s
σ
(p2,−p1) = [igγαδ

ad + ΓΩa
αA

∗γ
d

(−q)]ΓAd
γA

r
ρA

s
σ
(p2,−p1)

+ΓΩa
αA

s
σA

∗γ
d

(−p1, p2)ΓAd
γA

r
ρ
(p2) + ΓΩa

αA
r
ρA

∗γ
d

(p2,−p1)ΓAd
γA

s
σ
(p1)

+gfars (p2ρgασ + p1σgαρ) . (E.24)

E.3 BQI for the ghost-gluon trilinear vertex

In this section we are going to derive the BQIs relating the Rξ ghost sector with the BFM

ones. We start from the trilinear ghost-gluon coupling, for which we choose the following

functional differentiation

δ3S ′(Γ′)

δΩa
α(−q)δcm(k1)δc̄n(k2)

∣∣∣∣
Φ,Φ∗,Ω=0

= 0 k1 + k2 = q, (E.25)
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thus getting the result

iΓcm bAa
αc̄

n(−q, k2) = [iδdagγα + ΓΩa
αA

∗γ
d

(q)]ΓcmAd
γ c̄

n(−q, k2)

−ΓcmA∗γ
d

(−k1)ΓΩa
αA

d
γ c̄

n(k1, k2) − ΓΩa
αc

mc∗d(k1, k2)Γcdc̄n(k2). (E.26)

At tree-level we then correctly recover the result

iΓ
(0)

cm bAa
αc̄

n
(−q, k2) = iΓ

(0)
cmAa

αc̄
n(−q, k2) − gfamnk1α

= −gfamn(k1 − k2)α, (E.27)

(in this case there is no difference between using the complete or reduced functional).

F. Feynman rules

F.1 Rξ and BFM gauges

The Feynman rules for QCD in Rξ gauges are given in figure 26. In the case of the BFM

gauge, since the gauge fixing Lagrangian is quadratic in the quantum fields, apart from

vertices involving ghost fields only vertices containing exactly two quantum fields might

differ from the conventional ones. Thus, the vertices Γ bAψψ̄ and Γ bAAAA have to lowest order

the same expression as the corresponding Rξ ones ΓAψψ̄ and ΓAAAA (to higher order their

relation is described by the corresponding BQIs).

F.2 Anti-fields

The couplings of anti-fields with fields is entirely encoded in the BRST Lagrangian of

eq. (3.20). When choosing the BFM gauge the additional coupling gfamnA∗m
µ Ânν c

a will

arise in the BRST Lagrangian LBRST as a consequence of the BFM splitting A → Â+ A.

One then gets the Feynman rules given in figure 28.

F.3 BFM sources

The couplings of BFM sources Ωm
µ with fields can be derived from the Faddeev-Popov ghost

Lagrangian, since making use of the extended BRST transformation of eq. (3.31) we get

LFPG = −c̄asFa
BFM ⊃ −c̄agfamn(sÂmµ )Aµn = −gfamnc̄aΩm

µ A
µ
n. (F.1)

The corresponding Feynman rule is finally given in figure 29.
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